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Project overview
Atrial fibrillation

Atrial fibrillation (AF) - rapid and uncoordinated electrical activation
(arrhythmia) leading to poor mechanical function.

Affects around 610,000 people in UK.

Catheter ablation removes/isolates pathological tissue that
sustain/initiate AF.

40% of patients subsequently experience atrial tachycardia (AT).

http://staffwww.dcs.shef.ac.uk/people/R.Clayton/MoviesAndPictures/fk3d-3panel.mpg
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Project overview II
Patient Specific Cardiac Models

Aim: predict whether an AF patient will develop AT following ablation,
infer the reentry pathways, and then guide the surgical ablation to treat
for both in a single procedure.Precision Cardiology through the Digital Twin

Complex	patient		

O
bservations	

Population	prior	knowledge	

Physics	and	Physiology	

Virtual Patient

Digital Twin

Clinical	Decision	

But how confident are we in our predictions?



Project overview III
To infer reentry pathways we

use a complex simulator (encoding scientific knowledge) to see
whether AT can be maintained

This requires

Left atrium geometry, spatially distributed tissue properties, fibre
directions, etc for the individual patient

all of which are unknown.

Workflow:

MRI to build patient specific left atrium mesh, identify fibrosis.
Electrophysiology study to learn electrical activation map, conduction
velocities
Interpolate to entire LA, allowing conduction velocity and restitution
curves to be calculated
Use these to inform the heterogeneity in our prior distribution of the
tissue properties
Build an emulator of the simulator
Find our posterior distribution over tissue parameters etc
Predict AT pathways, make clinical recommendations
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Uncertainty quantification
Project aim is characterize and combine the uncertainties to make
decisions that take our lack of knowledge into account.

Noisy data, recorded at a small number of sparse, uncertain locations

Large number of unknown parameters

Complex simulator (limited computational resource)

Misspecification/discrepancy

P(Event|Data) =

∫
P(E |θ, x , f )π(θ, x , f |D)dθdxdf

where
π(θ, x , f |D) ∝ π(D|θ, x , f )π(θ)π(x)π(f )

We need to characterize variability at the

population level π(θ), π(x) etc

individual level π(θ, x , f , ...|D) – may need to be done online

and the physics/simulator π(D|θ, x , f )

Pragmatic approach necessary.
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Problem 1: Uncertain shape - Cesare Corrado

Image	artefact	

  Image	artefacts	
  Inter-operator	variability	
  Device	resolution	
  Noise	
  …	

Operator	1	

Minimizing Uncertainty through Standardized Workflows

Operator	2	
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Minimizing Uncertainty through Standardized Workflows

Operator	2	

Measure shape xobs ∈ RD where D ∼ 105

xobs = xtrue + e ′ where e ′ ∼ N(0,Σ′)

How can we parsimoniously describe the variation in atrial shapes in the
populations x1

true , . . . , x
n
true?

Working in the standard basis is infeasible

xobs =
∑
i

xobs,ivi where (vi )j = δij
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where λ = (λ1, . . . , λd)> is the new coordinate describing variation in Rd

(where d � D) for the orthonormal basis {u1, . . . , ud}.

Determine the reduced basis, error variance Σ and prior λ ∼ N(0,Σλ)
from the population. cf Andrew McCulloch’s talk
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Use Bayesian approach to characterize uncertainty about individual
anatomy via

π(λ|xobs) ∝ π(xobs |λ, Σ̂)π(λ)

where now typically λ ∈ R10.

Choice of basis?
Aim: characterize the population variability, i.e., p(x) in a lower
dimensional space

PCA basis is optimal

I ie let U = [u1, . . . , ud ] ∈ RD×d be the first d eigenvectors of Varp(x).
Then λ = U>x = (〈u1,X 〉, . . . , 〈ud ,X 〉)>.

I ui maximizes u>i Varp(x)ui s.t. 〈ui , uj〉 = δij
I Equivalently, UU>X is the best rank d approximation to X (in the

Frobenius norm ∼ L2).

But for other purposes (eg in supervised problems) PCA can give poor
dimension reduction.
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Quantifying Uncertainty in Shape on Model Predictions 
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Problem 2: Interpolation of LAT - Sam Coveney
Aside: Gaussian processes (GP)

Regression: given data {xi , yi = f (xi )}ni=1 learn f .

x is location on the atrium, f (x) is activation time
x is a simulator parameter, f (x) a complex simulator prediction.

GPs can be thought of as probabilistic models of functions.

A GP is a random process indexed by x ∈ X say, such that for every finite
set of indices, x1, . . . , xn,

f = (f (x1), . . . , f (xn))

has a multivariate Gaussian distribution.
Key choice is the covariance/kernel function k(x , x ′) = Cov(f (x), f (x ′))
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Why use GPs? Answer 1
Class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operation. If L is a linear operator, then

Lf ∼ GP(Lm,LkL>)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs. Can also analytically condition on

Lf = 0, e.g. incompressible flow ∇ · ∇f = 0
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Why use GPs? Answer 2: non-parametric/kernel regression
Linear regression y = x>β + ε can be written solely in terms of inner
products x>x .

β̂ = arg min ||y − Xβ||22 + σ2||β||22
= (X>X + σ2I )X>y

= X>(XX> + σ2I )−1y (the dual form)

We know that we can replace x by a feature vector in linear
regression, e.g., φ(x) = (1 x x2 cos(x))> etc.

For some features, inner product is equivalent to evaluating a kernel

φ(x)>φ(x ′) ≡ k(x , x ′)

where k : X × X → R is a semi-positive definite function.
Kernel trick: lift x into infinite dimensional feature space by
replacing inner products x>x ′ by k(x , x ′).
Never evaluate the features, only the n × n kernel matrix.

ŷ ′ = m(x ′) =
n∑

i=1

αik(x , xi )
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Generally, we don’t think about features, we just choose a kernel.

choice of kernel implicitly chooses features

model only includes functions that are linear combinations of the
features (the RKHS of k)

Example: If (modulo some detail)

φ(x) = (e−
(x−c1)2

2λ2 , . . . , e−
(x−cN )2

2λ2 )

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

Although our simulator may not lie in the RKHS defined by k , this space
is much richer than any parametric regression model (possibly dense in
some set of continuous functions)

more likely to contain an element close to the simulator than any
finite class of models
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Local activation time
Red: ’active’ cardiac tissue Blue: ’inactive’ cardiac tissue

We want to know the time of arrival of the ’electrical wave front’ - the
Local Activation Time (LAT).

An electrophysiology (EP) study performed by inserting catheters
and electrodes on left atrium surface, to measure electrical activity.



Interpolation
The LAT map tells us conduction velocities.

Heterogeneity in the conduction velocity tells us something about
heterogeneity in the tissue properties.

Typically, only able to measure LAT a small number (∼10s) of locations
on the atrium.

Idea: Interpolate the LAT map, use this to guide our prior distribution for
tissue properties for the simulator
How can we interpolate to other locations?

LATobs(x) = LATtrue(x) + εEGM + εposition



Interpolation
The LAT map tells us conduction velocities.

Heterogeneity in the conduction velocity tells us something about
heterogeneity in the tissue properties.

Typically, only able to measure LAT a small number (∼10s) of locations
on the atrium.

Idea: Interpolate the LAT map, use this to guide our prior distribution for
tissue properties for the simulator

How can we interpolate to other locations?

LATobs(x) = LATtrue(x) + εEGM + εposition



Interpolation
The LAT map tells us conduction velocities.

Heterogeneity in the conduction velocity tells us something about
heterogeneity in the tissue properties.

Typically, only able to measure LAT a small number (∼10s) of locations
on the atrium.

Idea: Interpolate the LAT map, use this to guide our prior distribution for
tissue properties for the simulator
How can we interpolate to other locations?

LATobs(x) = LATtrue(x) + εEGM + εposition



GP interpolation

We want to model

LAT (x) ∼ GP(m(x), k(x , x ′))

but standard approaches won’t work on complex atrial manifolds

Typically covariance is a function of the Euclidean distance between
two points i.e. k(x , x ′) ≡ k(‖x − x ′‖2),

We want the interpolation to take into account distance on the manifold
travelled by electrical wave.

Defining a valid positive definite covariance function on the manifold
is hard!
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INLA-SPDE approach: Lindgren, Rue, Lindstrom (2011)
Coveney et al. 2019

Instead of a GP formulated in terms of a covariance function, for Matern
covariance functions Whittle showed we can represent the GP as a
stochastic partial differential equation (SPDE):

(κ2 −∆)α/2LAT (x) = W (x)

Allows us to fit GPs using the machinery of finite element methods
(allows solution in O(n3/2) instead of O(n3)).

Makes it easy to work on irregular domains.

LAT (x) =
n∑

k=1

wkψk(x)

with wk ∼ N(0, Q̃−1) where Q̃ is sparse. Note

LAT (·) ∼ GP(0,Q−1)

for some Q
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Results - mean



Results - standard deviation



S1-S2 interpolation

The electrical restitution curve describes the recovery of action
potential duration as a function of the interbeat interval.

During an EP study the heart is ’paced’ at a regular S1 interval.

Premature interbeats introduced at interval S2

As the S2 interval shortens the heart tissue will eventually cease to
recover in time to activate for both beats



S1-S2 interpolation

The EP study measures activation time at ∼30 locations and ∼ 10 S2
intervals. We use INLA-SPDE approach to interpolate LAT at the
locations for a given S2 value.

allows us to borrow strength from different S2 intervals to improve
the interpolation?

Simplest way is to add S2 as an input, and assume an AR(1) relationship
between LAT (x ,S2i+1) and LAT (x ,S2i )

LAT (x ,S2i+1) ∼ N(ρLAT (x ,S2i ), (1− ρ2)Q−1)

or more precisely

LAT (x ,S2) ∼ GP(0,Q−1
S2 ⊗ Q−1)
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Results: Cross validation

Opens interesting design questions around data collection protocols



Random samples

Unfortunately random samples produce unphysical (non-monotonic)
patterns...
Not a surprise - the GP isn’t a scientific model - it doesn’t ’know’ it is
modelling a wave.....
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Problem 3: Learning tissue parameters from complex
simulators - ongoing
Incorporating physics

Model cellular electrophysiology using the Mitchell-Schaeffer (MS) ionic
model that captures conduction velocity and refractory restitution
properties.

5 parameters

The electrophysiology of the left atrium is simulated S(·) using a
monodomain equation in a shell anatomy with local activation given by
the MS model, isotropic tissue conductivity, and infarcted, dense fibrotic
and ablation regions modelled as non-conducting tissue

ie 5 parameters at every location θ(x)

Think of the simulator as a black box S(θ) where θ ∈ R5Ncell
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Emulation in high dimension

S is expensive to evaluate so we wish to resort to emulation.

given a training set {θi , yi = S(θi )}ni=1 we want to learn a statistical
representation of the mapping S : θ → y .

θ is high dimensional, we must reduce dimension to predict well

hard/impossible to learn a non-linear function in high dim space (all
points are far apart)

We need to find a representation λ of θ that allows us to build emulator
S̃ : λ→ y st

S̃(λ) ≈ S(θ)

eg with S̃ ∼GP.

Conflicting pressures... The representation needs to be

sufficiently detailed to allow us to answer the question about reentry
waves (so can’t be too low dim)

low enough dimension to allow GP emulation to be done.
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Options

Given a prior distribution p(θ) we could repeat the PCA trick and use
a truncated Karhunen-Loeve expansion

θ(x) ≈
d∑

j=1

λjφj(x)

where φj are the eigenfunctions of the linear operator associated with
the covariance function of p(x).

Instead, we will use

θ(x) = λLATLAT (x) + λFibFib(x) +
d ′∑
j=1

λjφ
′
j(x)

where φ′j are a Karhunen-Loeve basis orthogonal to the handpicked
basis vectors LAT (x) and Fib(x). Hope that the spatial
heterogeneity in θ will be similar to the spatial heterogeneity in LAT
and Fibrosis estimates.

We then seek to solve the inverse problem for λ and thus θ.
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Technical aside: PCA with two datasets
with Howard Elman

We want to solve the following optimization problem:

max
x

x>Ax subject to x>x = 1 and B>x = 0

where A is an n × n positive definite matrix. B here is a set of
orthonormal basis vectors (an incomplete basis) for Rn, i.e. B is n × p.
This is a non-convex problem with quadratic constraint.

Solution:
The condition B>x = 0 is equivalent to x ∈ null(B>) := Z i.e., x lies in
the null space of B. We then have that

Rn = Z ⊕ Z⊥ = Z ⊕ B

Thus x = Zw for some w , and so the problem becomes

max
w

w>Z>AZw subject to w>Z>Zw = w>w = 1

This is the original eigenvalue problem → solve with the SVD!
I.e., if A = X>X , then we do the SVD of XZ .
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Supervised dimension reduction
it does seem optimisitic to think that the marginal of θ

would necessarily be structured so that the leading principal
components contain the essential information about the
response (Dennis Cook - Fisher Lecture 2007)

More generally, we would like a supervised dimension reduction approach
to find a reduced space that targets both

Regression problem

Inverse problem

Currently looking into sufficient dimension reduction: find B so that

y ⊥⊥ θ|Bθ

∃ kernel sufficient dimension reduction, kernel CCA, kernel PCA, eg
instead of θ =

∑
〈θ, ui 〉ui use

θ =
∑
〈φ(θ), vi 〉F vi
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Conclusions

It is inappropriate to be concerned about mice when there
are tigers abroad. George Box

Where are our tigers?

Huge number of uncertain quantities. We need to find some
regularity in the problem to allow us to reduce dimension sufficiently
in order to make inference possible

I Can some uncertainties be ignored?
I Do some uncertainties need more degrees of freedom to be described

than others?

Simulator discrepancy - can we model our way out of trouble?

Thank you for listening!
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