a man's attitude toward inference, like his attitude towards religion, is determined by his emotional make-up, not by reason or mathematics.

M Kendall

Adjoint-aided inference of Gaussian process driven differential equations

Paterne Gahungu¹, Christopher Lanyon⁵, Mauricio Alvarez³, Engineer Bainomugisha⁴, Michael Smith²

Richard Wilkinson⁵

June 2023

Department of Computer Science, University of Burundi

² Department of Computer Science, University of Sheffield

³ Department of Computer Science, University of Manchester
⁴ Department of Computer Science, Makerere University

⁵ School of Mathematical Sciences, University of Nottingham

Project team

Paterne

Engineer

Mike

Mauricio

Chris

Funders:

Outline

- Motivating example: Air pollution in Kampala
- Inference for linear systems:

$$\mathcal{L}u = f$$

Given noisy measurements of u can we infer f?

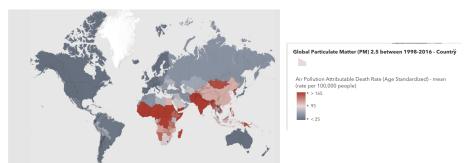
Adjoints

$$\mathcal{L}^*v$$
 such that $\langle \mathcal{L}u,v \rangle = \langle u,\mathcal{L}^*v \rangle$

Examples

Air pollution

7 million people die every year from exposure to air pollution, the majority in LMICs.



The UK government estimates the annual mortality of human-made air pollution to be 28,000 to 36,000 deaths, and costs UK $\sim £10^{10}$

Kampala and AirQo Smith et al. to appear JRSS C

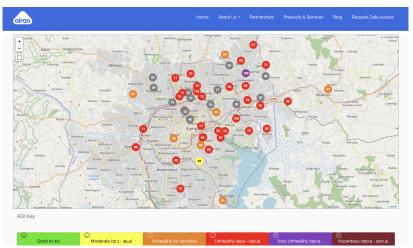
- · AirQo, a portable air quality monitor
- Measures particulate matter
- Solar powered or other available power sources
- Cellular data transmission
- Weather proof for unique African settings

Accurate gravimetric sensors costs \$10,000s.

AirQo have developed cheap (but less accurate) sensors that cost < \$100 and have deployed them around Kampala.

The sensors measure PM2.5 and PM10.

Kampala: PM2.5 levels 12pm yesterday



London (17th of 27 European capitals): $8 \mu g/m^3$

20 year average for UK: $11 \ \mu g/m^3$

WHO guideline: $5\mu g/m^3$

Google.org @ @Googleorg · 12h

Air pollution is the largest single environmental health risk. @AirQoProject is building & deploying low-cost air sensing devices across African cities to drive awareness and action to improve air quality and help decision makers: goo.gle/3fozTDn

Using Al to reduce air pollution across African cities

Google org | GOALS

ta AirOo Retweeted

Kampala Capital City Authority (KCCA) @ @KCCAUG - 1h THANK YOU!

THANK YOU!

To all partners/everyone that supported and showed up for the Kampala Car Free Day.

We believe this was one of the steps to promoting co-existence of all road users, raise road safety awareness & reduce air pollution in the City.

Model pollution concentration u(x,t) at location x time t. We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.

Model pollution concentration u(x,t) at location x time t. We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.

Instead build data models that know some physics

$$\frac{\partial u}{\partial t} = \nabla . (\mathbf{p}_1 u) + \nabla . (\mathbf{p}_2 \nabla u) - \mathbf{p}_3 u + \sum_i f_i$$

- $f_i(x, t)$ are different pollution sources,
- we may choose to model different pollution types (PM2.5, PM10 etc)

Model pollution concentration u(x,t) at location x time t. We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.

Instead build data models that know some physics

$$\frac{\partial u}{\partial t} = \nabla . (\mathbf{p}_1 u) + \nabla . (\mathbf{p}_2 \nabla u) - \mathbf{p}_3 u + \sum_i f_i$$

- $f_i(x, t)$ are different pollution sources,
- we may choose to model different pollution types (PM2.5, PM10 etc)

Hypothesis: The inclusion of mechanistic behaviour will allow us to infer sources, plan interventions, and predict better.

Model pollution concentration u(x, t) at location x time t. We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.

Instead build data models that know some physics

$$\frac{\partial u}{\partial t} = \nabla \cdot (\mathbf{p}_1 u) + \nabla \cdot (p_2 \nabla u) - p_3 u + \sum_i f_i$$

- $f_i(x, t)$ are different pollution sources,
- we may choose to model different pollution types (PM2.5, PM10 etc)

Hypothesis: The inclusion of mechanistic behaviour will allow us to infer sources, plan interventions, and predict better.

NB: can also extend the model with a GP to capture missing physics

Computational challenge

Given noisy measurements of pollution levels $z_i = h_i(u) + e_i$. Can we infer

- the concentration field u(x, t)?
- the unknown source terms $f_i(x, t)$?
- the diffusion, advection and reaction parameters? Hyperparameters etc?

Computational challenge

Given noisy measurements of pollution levels $z_i = h_i(u) + e_i$. Can we infer

- the concentration field u(x, t)?
- the unknown source terms $f_i(x, t)$?
- the diffusion, advection and reaction parameters? Hyperparameters etc?

Use Gaussian process priors for $f_i(x,t)$

$$f_i \sim GP(m_i(\cdot), k_i(\cdot, \cdot))$$

where we carefully choose each prior mean and covariance function:

- Industrial regions
- Major roads and power stations
- Varying affluence levels between regions (related to paving of roads, burning of garbage, cooking on solid fuel stoves etc).

General linear systems

 $\mathcal{L}u = f$

Linear systems with unknown parameters

Consider

$$\mathcal{L}_{p}u = f$$

where

- \mathcal{L}_p = linear operator with non-linear dependence upon parameters p.
- f =forcing function.
- *u* is the quantity being modelled, e.g. pollution concentration.

Finding u given p and f is the **forward problem**.

Linear systems with unknown parameters

Consider

$$\mathcal{L}_p u = f$$

where

- \mathcal{L}_p = linear operator with non-linear dependence upon parameters p.
- f =forcing function.
- *u* is the quantity being modelled, e.g. pollution concentration.

Finding u given p and f is the **forward problem**.

Inverse problem: infer u, f, p given noisy observations of u

$$z = h(u) + N(0, \Sigma).$$

Note: MCMC likely to be prohibitively expensive: each iteration requires a solution of the forward problem.

Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

$$\min_{p,f} \quad (z-h(u))^\top (z-h(u))$$
 subject to $\mathcal{L}_p u = f$.

Bayes: find

$$\pi(p, f, u|z)$$
.

See Estep 2004

Let $\mathcal{L}: \mathcal{U} \to \mathcal{V}$ be a bounded linear operator between Banach spaces, and let \mathcal{U}^* be the dual space of \mathcal{U} : the space of bdd linear functionals on \mathcal{U} .

See Estep 2004

Let $\mathcal{L}:\mathcal{U}\to\mathcal{V}$ be a bounded linear operator between Banach spaces, and let \mathcal{U}^* be the dual space of \mathcal{U} : the space of bdd linear functionals on \mathcal{U} .

Consider $v^* \in \mathcal{V}^*$ and define $F: \mathcal{U} \to \mathbb{R}$ by

$$F: u \mapsto v^*(\mathcal{L}(u)).$$

See Estep 2004

Let $\mathcal{L}: \mathcal{U} \to \mathcal{V}$ be a bounded linear operator between Banach spaces, and let \mathcal{U}^* be the dual space of \mathcal{U} : the space of bdd linear functionals on \mathcal{U} .

Consider $v^* \in \mathcal{V}^*$ and define $F: \mathcal{U} \to \mathbb{R}$ by

$$F: u \mapsto v^*(\mathcal{L}(u)).$$

Then F is a bounded linear functional on \mathcal{U} , i.e. $F = u^*$ for some $u^* \in \mathcal{U}^*$.

Thus for all $v^* \in \mathcal{V}^*$ we've associated a unique $u^* \in \mathcal{U}^*$.

See Estep 2004

Let $\mathcal{L}: \mathcal{U} \to \mathcal{V}$ be a bounded linear operator between Banach spaces, and let \mathcal{U}^* be the dual space of \mathcal{U} : the space of bdd linear functionals on \mathcal{U} .

Consider $v^* \in \mathcal{V}^*$ and define $F : \mathcal{U} \to \mathbb{R}$ by

$$F: u \mapsto v^*(\mathcal{L}(u)).$$

Then F is a bounded linear functional on \mathcal{U} , i.e. $F = u^*$ for some $u^* \in \mathcal{U}^*$.

Thus for all $v^* \in \mathcal{V}^*$ we've associated a unique $u^* \in \mathcal{U}^*$.

$$\mathcal{L}^*: \mathbf{v}^* \mapsto \mathbf{u}^*.$$

 \mathcal{L}^* is the **adjoint** of \mathcal{L} , and is itself a bounded linear operator.

See Estep 2004

Let $\mathcal{L}: \mathcal{U} \to \mathcal{V}$ be a bounded linear operator between Banach spaces, and let \mathcal{U}^* be the dual space of \mathcal{U} : the space of bdd linear functionals on \mathcal{U} .

Consider $v^* \in \mathcal{V}^*$ and define $F: \mathcal{U} \to \mathbb{R}$ by

$$F: u \mapsto v^*(\mathcal{L}(u)).$$

Then F is a bounded linear functional on \mathcal{U} , i.e. $F = u^*$ for some $u^* \in \mathcal{U}^*$.

Thus for all $v^* \in \mathcal{V}^*$ we've associated a unique $u^* \in \mathcal{U}^*$.

$$\mathcal{L}^*: \mathbf{v}^* \mapsto \mathbf{u}^*.$$

 \mathcal{L}^* is the **adjoint** of \mathcal{L} , and is itself a bounded linear operator. By definition

$$v^*(\mathcal{L}(u)) = \mathcal{L}^*v^*(u)$$

which is known as the bilinear identity.

Adjoints in Hilbert space

See Estep 2004

When ${\mathcal U}$ and ${\mathcal V}$ are Hilbert spaces

• i.e. vector spaces with an inner product $\langle u, u' \rangle$,

we can identify them with their dual space:

• Riesz representation theorem: for all $v^* \in \mathcal{V}^*$ there exists $v \in \mathcal{V}$ such that $v^* = \langle \cdot, v \rangle_{\mathcal{V}}$

Adjoints in Hilbert space

See Estep 2004

When ${\mathcal U}$ and ${\mathcal V}$ are Hilbert spaces

• i.e. vector spaces with an inner product $\langle u, u' \rangle$,

we can identify them with their dual space:

• Riesz representation theorem: for all $v^* \in \mathcal{V}^*$ there exists $v \in \mathcal{V}$ such that $v^* = \langle \cdot, v \rangle_{\mathcal{V}}$

The bilinear identity reduces to

$$\langle \mathcal{L}u, v \rangle = v^*(\mathcal{L}(u)) = \mathcal{L}^*v^*(u)$$

= $\langle u, \mathcal{L}^*v \rangle$.

where we now consider $\mathcal{L}^*: \mathcal{V} \to \mathcal{U}$.

Example 0

In the finite dimensional case, $\mathcal{U}=\mathbb{R}^n$, $\mathcal{V}=\mathbb{R}^m$, then $\langle u_1,u_2\rangle=u_1^\top u_2$ etc and

 $\mathcal{L}u = Au$ for some m x n matrix A.

Example 0

In the finite dimensional case, $\mathcal{U}=\mathbb{R}^n$, $\mathcal{V}=\mathbb{R}^m$, then $\langle u_1,u_2\rangle=u_1^\top u_2$ etc and

 $\mathcal{L}u = Au$ for some m x n matrix A.

Then

$$\mathcal{L}^* v = A^\top v$$

That is

$$\langle Au, v \rangle = \langle u, A^{\top}v \rangle$$

Efficient inference

$$\mathcal{L}u = f, \qquad z_i = h_i(u) + e$$

If the observation operator is linear

$$h_i(u) = \langle h_i, u \rangle$$

we can consider the n adjoint systems

$$\mathcal{L}^* v_i = h_i$$
 for $i = 1, \ldots, n$.

Efficient inference

$$\mathcal{L}u = f, \qquad z_i = h_i(u) + e$$

If the observation operator is linear

$$h_i(u) = \langle h_i, u \rangle$$

we can consider the n adjoint systems

$$\mathcal{L}^* v_i = h_i$$
 for $i = 1, \ldots, n$.

Then

$$h_i(u) = \langle h_i, u \rangle = \langle \mathcal{L}^* v_i, u \rangle = \langle v_i, \mathcal{L}u \rangle$$

= $\langle v_i, f \rangle$,

by the bilinear identity.

$$z_i = h_i(u) + e_i = \langle v_i, f \rangle + e_i$$

where $\mathcal{L}^* v_i = h_i$

Suppose f is a parametric model with a linear dependence upon some unknown parameters q:

$$f(\cdot) = \sum_{m=1}^{M} q_m \phi_m(\cdot) \tag{1}$$

$$z_i = h_i(u) + e_i = \langle v_i, f \rangle + e_i$$

where $\mathcal{L}^* v_i = h_i$

Suppose f is a parametric model with a linear dependence upon some unknown parameters q:

$$f(\cdot) = \sum_{m=1}^{M} q_m \phi_m(\cdot) \tag{1}$$

then
$$h_i(u) = \langle v_i, \sum_{m=1}^M q_m \phi_m \rangle = \sum_{m=1}^M q_m \langle v_i, \phi_m \rangle.$$

A linear model!

The complete observation vector z can then be written as

$$z = \begin{pmatrix} \langle v_1, \phi_1 \rangle & \dots & \langle v_1, \phi_M \rangle \\ \vdots & & \vdots \\ \langle v_n, \phi_1 \rangle & \dots & \langle v_n, \phi_M \rangle \end{pmatrix} \begin{pmatrix} q_1 \\ q_M \end{pmatrix} + e$$

$$= \Phi q + e$$
(2)

The complete observation vector z can then be written as

$$z = \begin{pmatrix} \langle v_1, \phi_1 \rangle & \dots & \langle v_1, \phi_M \rangle \\ \vdots & & \vdots \\ \langle v_n, \phi_1 \rangle & \dots & \langle v_n, \phi_M \rangle \end{pmatrix} \begin{pmatrix} q_1 \\ q_M \end{pmatrix} + e$$

$$= \Phi q + e$$
(2)

Thus

$$\min_f \quad S(f) = (z - h(u))^{ op} (z - h(u))$$
 subject to $\mathcal{L}u = f$

is equivalent to

$$\min_{q} \quad S(q) = (z - \Phi q)^{\top} (z - \Phi q)$$

The complete observation vector z can then be written as

$$z = \begin{pmatrix} \langle v_1, \phi_1 \rangle & \dots & \langle v_1, \phi_M \rangle \\ \vdots & & \vdots \\ \langle v_n, \phi_1 \rangle & \dots & \langle v_n, \phi_M \rangle \end{pmatrix} \begin{pmatrix} q_1 \\ q_M \end{pmatrix} + e$$

$$= \Phi q + e$$
(2)

Thus

$$\min_f \quad S(f) = (z - h(u))^{ op} (z - h(u))$$
 subject to $\mathcal{L}u = f$

is equivalent to

$$\min_{q} \quad S(q) = (z - \Phi q)^{\top} (z - \Phi q)$$

The solution is

$$\hat{q} = (\Phi^{\top}\Phi)^{-1}\Phi^{\top}z$$

with $\mathbb{V}\operatorname{ar}(\hat{q}) = \sigma^2(\Phi^{\top}\Phi)^{-1}$ when e_i are uncorrelated and homoscedastic with variance σ^2 .

In a Bayesian setting, if we assume a priori that $q \sim \mathcal{N}_M(\mu_0, \Sigma_0)$, then the posterior for q given z (and other parameters) is

$$q \mid z \sim \mathcal{N}_{M}(\mu_{n}, \Sigma_{n}) \tag{3}$$

where

$$\mu_n = \Sigma_n \left(\frac{1}{\sigma^2} \Phi^\top z + \Sigma_0^{-1} \mu_0\right), \quad \Sigma_n = \left(\frac{1}{\sigma^2} \Phi^\top \Phi + \Sigma_0^{-1}\right)^{-1}. \tag{4}$$

Benefits of adjoints

$$\min_{p,f} S(p,f) = (z - h(u))^{\top} (z - h(u))$$

subject to $\mathcal{L}_p u = f$.

• If $f \equiv f_q$ depends linearly on some parameters q we can easily compute the least squares estimator

$$\hat{q}(p) = \arg\min_{q} S(p, f_q)$$

Benefits of adjoints

$$\min_{p,f} S(p,f) = (z - h(u))^{\top} (z - h(u))$$

subject to $\mathcal{L}_p u = f$.

• If $f \equiv f_q$ depends linearly on some parameters q we can easily compute the least squares estimator

$$\hat{q}(p) = \arg\min_{q} S(p, f_q)$$

If $z=h(u)+N(0,\Sigma)$, and $q\sim N(m,C)$ a priori, then $q\mid z,p=N(m^*,C^*)$

Benefits of adjoints

$$\min_{p,f} S(p,f) = (z - h(u))^{\top} (z - h(u))$$

subject to $\mathcal{L}_p u = f$.

• If $f \equiv f_q$ depends linearly on some parameters q we can easily compute the least squares estimator

$$\hat{q}(p) = \arg\min_{q} S(p, f_q)$$

▶ If $z = h(u) + N(0, \Sigma)$, and $q \sim N(m, C)$ a priori, then

$$q \mid z, p = N(m^*, C^*)$$

② We can compute $\frac{\mathrm{d}S}{\mathrm{d}p}(p,f_q)$ (and approximate $\frac{\mathrm{d}S}{\mathrm{d}p}(p,f_{\hat{q}(p)})$?)

Benefits of adjoints

$$\min_{p,f} S(p,f) = (z - h(u))^{\top} (z - h(u))$$

subject to $\mathcal{L}_p u = f$.

• If $f \equiv f_q$ depends linearly on some parameters q we can easily compute the least squares estimator

$$\hat{q}(p) = \arg\min_{q} S(p, f_q)$$

▶ If $z = h(u) + N(0, \Sigma)$, and $q \sim N(m, C)$ a priori, then

$$q \mid z, p = N(m^*, C^*)$$

② We can compute $\frac{\mathrm{d}S}{\mathrm{d}p}(p,f_q)$ (and approximate $\frac{\mathrm{d}S}{\mathrm{d}p}(p,f_{\hat{q}(p)})$?)

This may allow for efficient inference of p and f

Quick intro to Gaussian Processes

Suppose we model unknown function $f = \{f(x) : x \in \mathcal{X}\}$ as a Gaussian process (GP)

• i.e. joint distribution of $f(x_1), \ldots, f(x_n)$ is Gaussian.

Quick intro to Gaussian Processes

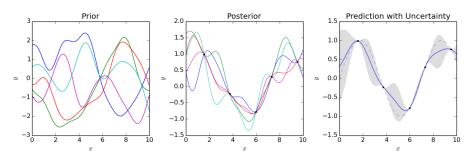
Suppose we model unknown function $f = \{f(x) : x \in \mathcal{X}\}$ as a Gaussian process (GP)

• i.e. joint distribution of $f(x_1), \ldots, f(x_n)$ is Gaussian.

All we need to do is specify the prior mean and covariance functions

$$\mathbb{E}f(x) = m(x), \quad \mathbb{C}ov(f(x), f(x')) = k(x, x')$$

Write $f \sim GP(m, k)$.



- Mathematically attractive family
 - Closed under addition

$$\mathit{f}_{1},\mathit{f}_{2}\sim\mathit{GP}$$
 then $\mathit{f}_{1}+\mathit{f}_{2}\sim\mathit{GP}$

- Mathematically attractive family
 - Closed under addition

$$f_1, f_2 \sim \textit{GP}$$
 then $f_1 + f_2 \sim \textit{GP}$

▶ Closed under Bayesian conditioning: if we observe $\mathbf{D} = (f(x_1), \dots, f(x_n))$ then

$$f|D\sim GP$$

but with updated mean and covariance functions.

- Mathematically attractive family
 - Closed under addition

$$f_1, f_2 \sim \textit{GP}$$
 then $f_1 + f_2 \sim \textit{GP}$

▶ Closed under Bayesian conditioning: if we observe $\mathbf{D} = (f(x_1), \dots, f(x_n))$ then

$$f|D \sim GP$$

but with updated mean and covariance functions.

▶ Closed under any linear operator. If $f \sim GP(m(\cdot), k(\cdot, \cdot))$, then \mathcal{L} is a linear operator

$$\mathcal{L} \circ f \sim GP(\mathcal{L} \circ m, \mathcal{L}^2 \circ k)$$

e.g.
$$\frac{df}{dx}$$
, $\int f(x)dx$, Af are all GPs

- Mathematically attractive family
 - Closed under addition

$$f_1, f_2 \sim \textit{GP}$$
 then $f_1 + f_2 \sim \textit{GP}$

► Closed under Bayesian conditioning: if we observe $\mathbf{D} = (f(x_1), \dots, f(x_n))$ then

$$f|D \sim GP$$

but with updated mean and covariance functions.

▶ Closed under any linear operator. If $f \sim GP(m(\cdot), k(\cdot, \cdot))$, then \mathcal{L} is a linear operator

$$\mathcal{L} \circ f \sim GP(\mathcal{L} \circ m, \mathcal{L}^2 \circ k)$$

e.g.
$$\frac{df}{dx}$$
, $\int f(x)dx$, Af are all GPs

• Natural - Best linear unbiased predictors etc

- Mathematically attractive family
 - Closed under addition

$$f_1, f_2 \sim GP$$
 then $f_1 + f_2 \sim GP$

▶ Closed under Bayesian conditioning: if we observe $\mathbf{D} = (f(x_1), \dots, f(x_n))$ then

$$f|D \sim GP$$

but with updated mean and covariance functions.

▶ Closed under any linear operator. If $f \sim GP(m(\cdot), k(\cdot, \cdot))$, then \mathcal{L} is a linear operator

$$\mathcal{L} \circ f \sim GP(\mathcal{L} \circ m, \mathcal{L}^2 \circ k)$$

e.g.
$$\frac{df}{dx}$$
, $\int f(x)dx$, Af are all GPs

- Natural Best linear unbiased predictors etc
- Relate to other methods such as kernel regression

Parameterizing GPs

$$f(x) \sim GP(m(x), k(x, x')).$$

How can we use GPs within the adjoint framework developed earlier?

Parameterizing GPs

$$f(x) \sim GP(m(x), k(x, x')).$$

How can we use GPs within the adjoint framework developed earlier?

- Let $\mathcal F$ be the RKHS (function space) associated with kernel k, i.e., $f \in \mathcal F$
- Consider $\{\phi_1(x), \phi_2(x), \ldots\}$ an orthonormal basis for \mathcal{F} .

Parameterizing GPs

$$f(x) \sim GP(m(x), k(x, x')).$$

How can we use GPs within the adjoint framework developed earlier?

- Let $\mathcal F$ be the RKHS (function space) associated with kernel k, i.e., $f \in \mathcal F$
- Consider $\{\phi_1(x), \phi_2(x), \ldots\}$ an orthonormal basis for \mathcal{F} .

We can then approximate f using a truncated basis expansion

$$f(x) pprox f_q(x) = \sum_{j=1}^M q_i \phi_i(x)$$
 where a priori $q_i \sim N(0, \lambda_i^2)$
= $\Phi \mathbf{q} + e$

We've approximated the GP by a linear model.

Choice of basis in
$$f_q(\cdot) = \sum_{i=1}^{M} q_i \lambda_i \phi_i(\cdot)$$

• Mercer basis: $\phi_i(x) = \lambda_i \psi(x)$ where $\lambda_i, \phi_i(\cdot)$ are eigenpairs of

$$T_k(f)(\cdot) = \int_{\mathcal{X}} k(x, \cdot) f(x) dx.$$

Karhunen-Loève theorem says this choice is mean square optimal

Choice of basis in
$$f_q(\cdot) = \sum_{i=1}^{M} q_i \lambda_i \phi_i(\cdot)$$

• Mercer basis: $\phi_i(x) = \lambda_i \psi(x)$ where $\lambda_i, \phi_i(\cdot)$ are eigenpairs of

$$T_k(f)(\cdot) = \int_{\mathcal{X}} k(x,\cdot)f(x)dx.$$

Karhunen-Loève theorem says this choice is mean square optimal

• Random Fourier features: If k stationary, Bochner's theorem:

$$k(x-x') = \int \exp(iw^{\top}(x-x'))p(w)dw = \mathbb{E}_{w\sim p}\exp(iw^{\top}(x-x'))$$

Thus we can use $\phi_i(x) = \cos(w_i^\top x + b_i)$ where $w_i \sim p(\cdot)$ and $b_i \sim U[0, 2\pi]$

Choice of basis in
$$f_q(\cdot) = \sum_{i=1}^{M} q_i \lambda_i \phi_i(\cdot)$$

• Mercer basis: $\phi_i(x) = \lambda_i \psi(x)$ where $\lambda_i, \phi_i(\cdot)$ are eigenpairs of

$$T_k(f)(\cdot) = \int_{\mathcal{X}} k(x,\cdot)f(x)dx.$$

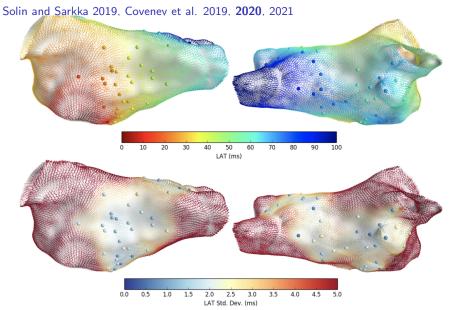
Karhunen-Loève theorem says this choice is mean square optimal

• Random Fourier features: If k stationary, Bochner's theorem:

$$k(x-x') = \int \exp(iw^{\top}(x-x'))p(w)dw = \mathbb{E}_{w\sim p}\exp(iw^{\top}(x-x'))$$

Thus we can use $\phi_i(x) = \cos(w_i^\top x + b_i)$ where $w_i \sim p(\cdot)$ and $b_i \sim U[0, 2\pi]$

Laplacian basis: useful for non-Euclidean domains



Consider the ordinary differential equation

$$-D\ddot{u} + \nu \dot{u} + u = f(t)$$
 with $u(0) = \dot{u}(0) = 0$.

Consider the ordinary differential equation

$$-D\ddot{u} + \nu \dot{u} + u = f(t)$$
 with $u(0) = \dot{u}(0) = 0$.

Use the bilinear identity to find the adjoint

Consider the ordinary differential equation

$$-D\ddot{u} + \nu \dot{u} + u = f(t)$$
 with $u(0) = \dot{u}(0) = 0$.

Use the bilinear identity to find the adjoint

$$\langle \mathcal{L}u, v \rangle = \int_0^T \mathcal{L}u(t)v(t)dt = \int_0^T (-D\ddot{u} + \nu\dot{u} + u)vdt$$
$$= [-D\dot{u}v]_0^T + \int_0^T D\dot{u}\dot{v}dt + [\nu uv]_0^T - \int_0^T \nu u\dot{v}dt + \int_0^T uvdt$$

Consider the ordinary differential equation

$$-D\ddot{u} + \nu \dot{u} + u = f(t)$$
 with $u(0) = \dot{u}(0) = 0$.

Use the bilinear identity to find the adjoint

$$\begin{split} \langle \mathcal{L}u,v\rangle &= \int_0^T \mathcal{L}u(t)v(t)\mathrm{d}t = \int_0^T (-D\ddot{u} + \nu\dot{u} + u)v\mathrm{d}t \\ &= [-D\dot{u}v]_0^T + \int_0^T D\dot{u}\dot{v}\mathrm{d}t + [\nu uv]_0^T - \int_0^T \nu u\dot{v}dt + \int_0^T uv\mathrm{d}t \\ &= [Du\dot{v}]_0^T - \int_0^T Du\ddot{v}\mathrm{d}t - \int_0^T \nu u\dot{v}dt + \int_0^T uv\mathrm{d}t \\ &= \int_0^T (-D\ddot{v} - \nu\dot{v} + v)u\mathrm{d}t \quad \text{ when } v(T) = \dot{v}(T) = 0 \\ &= \langle u, \mathcal{L}^*v \rangle \end{split}$$

So the linear operator

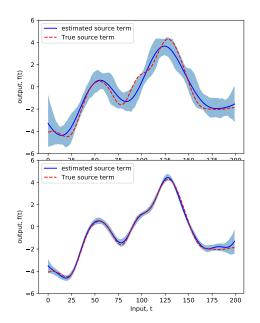
$$\mathcal{L}u = \left(-D\frac{\mathrm{d}^2}{\mathrm{d}t^2} + \nu\frac{\mathrm{d}}{\mathrm{d}t} + 1\right)u \quad \text{with } u(0) = \dot{u}(0) = 0$$

has adjoint operator

$$\mathcal{L}^* v = \left(-D \frac{\mathrm{d}^2}{\mathrm{d}t^2} - \nu \frac{\mathrm{d}}{\mathrm{d}t} + 1\right)v \quad \text{with } v(T) = \dot{v}(T) = 0$$

The initial conditions for the original system translate to final conditions for the adjoint system.

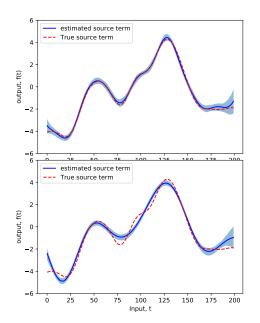
Example 1: Posterior mean and 95% CI (blue), true (red)



- top: n = 10 data points, M = 100 basis vectors
- bottom: n = 100 and M = 100

Results required 10 and 100 ODE solves respectively.

Example 1: Too few features



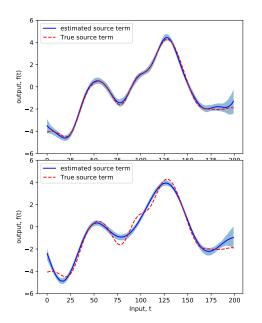
n = 100 data points

• top: M = 100 basis vectors

• bottom: *M* = 10

NB: overconfident and wrong when M = 10 - misspecified model!

Example 1: Too few features



n = 100 data points

• top: M = 100 basis vectors

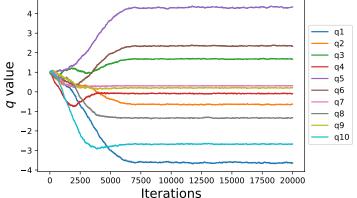
• bottom: *M* = 10

NB: overconfident and wrong when M = 10 - misspecified model!

We need enough features to have sufficient modelling flexibility.

Additional features don't require additional ODE solves.

MCMC is fine as long as you have a small number of features. But even with only 10 features, we need \sim 1000s of ODE solves vs 10 ODE solves for the adjoint method.



MCMC takes longer to converge when we use more features.

Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$\mathcal{L}u = \frac{\partial u}{\partial t} - \nabla \cdot (\mathbf{p}_1 u) - \nabla \cdot (p_2 \nabla u) + p_3 u$$

Forward problem: solve (for some initial and boundary conditions)

$$\mathcal{L}u = f \text{ on } \mathcal{X} \times [0, T].$$

Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$\mathcal{L}u = \frac{\partial u}{\partial t} - \nabla \cdot (\mathbf{p}_1 u) - \nabla \cdot (p_2 \nabla u) + p_3 u$$

Forward problem: solve (for some initial and boundary conditions)

$$\mathcal{L}u = f$$
 on $\mathcal{X} \times [0, T]$.

Inverse problem: assume

$$f(x,t) \sim GP(m, k_{\lambda}((x,t),(x',t')))$$

and estimate f given $z_i = \langle h_i, u \rangle + N(0, \sigma)$.

Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$\mathcal{L}u = \frac{\partial u}{\partial t} - \nabla \cdot (\mathbf{p}_1 u) - \nabla \cdot (p_2 \nabla u) + p_3 u$$

Forward problem: solve (for some initial and boundary conditions)

$$\mathcal{L}u = f$$
 on $\mathcal{X} \times [0, T]$.

Inverse problem: assume

$$f(x,t) \sim GP(m, k_{\lambda}((x,t),(x',t')))$$

and estimate f given $z_i = \langle h_i, u \rangle + N(0, \sigma)$.

 h_i are sensor functions that average the pollution at a specific location over a short window

$$\langle h_i, u \rangle = \frac{1}{|\mathcal{T}_i|} \int_{\mathcal{T}_i} u(x_i, t) dt$$

The adjoint system is again derived by integrating by parts twice:

$$\mathcal{L}^* v = -\frac{\partial v}{\partial t} - \mathbf{p}_1 \cdot \nabla v - \nabla \cdot (p_2 \nabla v) + p_3 u.$$

The adjoint system is again derived by integrating by parts twice:

$$\mathcal{L}^* v = -\frac{\partial v}{\partial t} - \mathbf{p}_1 \cdot \nabla v - \nabla \cdot (\mathbf{p}_2 \nabla v) + \mathbf{p}_3 u.$$

For n observations we need n adjoint equations!

$$\mathcal{L}^* v_i = h_i \text{ in } \mathcal{X} \times [0, T] \text{ for } i = 1, \dots, n.$$

The adjoint system is again derived by integrating by parts twice:

$$\mathcal{L}^* v = -\frac{\partial v}{\partial t} - \mathbf{p}_1 \cdot \nabla v - \nabla \cdot (p_2 \nabla v) + p_3 u.$$

For n observations we need n adjoint equations!

$$\mathcal{L}^* v_i = h_i$$
 in $\mathcal{X} \times [0, T]$ for $i = 1, \dots, n$.

If we use initial and boundary conditions

$$u(x,0) = 0$$
 for $x \in \mathcal{X}$ and $\nabla_n u = 0$ for $x \in \partial \mathcal{X}$

then the final and boundary conditions on the adjoint system are

$$v_i(x,T)=0$$
 for $x\in\mathcal{X}$ $\mathbf{p}_1v_i(x,t)+p_2
abla v_i(x,t)=0$ for $x\in\partial\Omega$ and $t\in[0,T].$

The adjoint system is again derived by integrating by parts twice:

$$\mathcal{L}^* v = -\frac{\partial v}{\partial t} - \mathbf{p}_1 \cdot \nabla v - \nabla \cdot (p_2 \nabla v) + p_3 u.$$

For n observations we need n adjoint equations!

$$\mathcal{L}^* v_i = h_i$$
 in $\mathcal{X} \times [0, T]$ for $i = 1, \dots, n$.

If we use initial and boundary conditions

$$u(x,0) = 0$$
 for $x \in \mathcal{X}$ and $\nabla_n u = 0$ for $x \in \partial \mathcal{X}$

then the final and boundary conditions on the adjoint system are

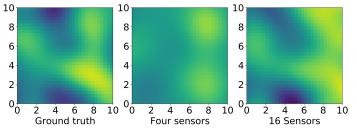
$$v_i(x,T) = 0 \text{ for } x \in \mathcal{X}$$

 $\mathbf{p}_1 v_i(x,t) + p_2 \nabla v_i(x,t) = 0 \text{ for } x \in \partial \Omega \text{ and } t \in [0,T].$

- May find numerical issues: depends on the discretization, the sensor functions h_i , diffusion rate etc
- The cost of solving the adjoint is the same as solving the forward problem.

Results: n = 20 (4 sensors) and n = 80 (16), noise =10%

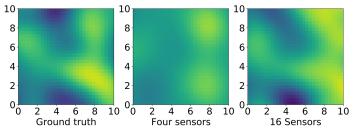
Posterior mean of time slice u(x,5) - more sensors, improved estimates!



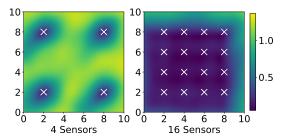
Variance of u(x,5): Wind from the south west.

Results: n = 20 (4 sensors) and n = 80 (16), noise =10%

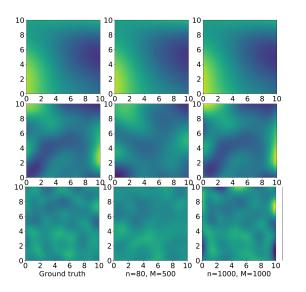
Posterior mean of time slice u(x,5) - more sensors, improved estimates!



Variance of u(x,5): Wind from the south west.



Effect of length scale, $\lambda = 5, 2, 1$



MSE 0.008 and 0.004

MSE 0.68 and 0.07

MSE 1.85 and 2.55

Example 2: Results

Mean square error vs number of features and sensors

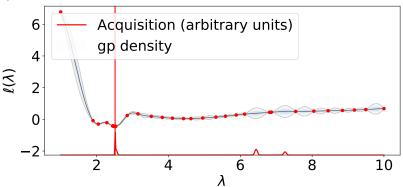
Median MSE as a function of number of sensors and basis vectors.

Sensors			# basis vectors		
	10	50	100	200	300
1	3.42 (2.82,4.39)	3.27 (3.13,3.38)	3.24 (3.10,3.37)	3.27 (3.17,3.44)	3.24
4	7.12 (1.57,28.81)	2.39 (2.06, 2.62)	2.41 (2.13, 2.60)	2.45 (2.32,2.57)	2.50
9	2.38 (1.41,4.40)	2.12 (1.48, 3.98)	1.70 (1.49,2.07)	1.48 (1.40,1.72)	1.47
16	1.73 (1.23,3.28)	3.99 (2.32,10.90)	2.18 (1.72, 3.54)	1.3 (1.02,1.68)	1.12
25	1.35 (1.19,3.09)	8.93 (4.92,39.86)	4.36 (2.53,8.20)	1.86 (1.43,2.75)	1.35
25 (MH)	3.27 (1.73,6.12)	-	= '	- '	-

MH algorithm did not converge after 20,000 iterations for 50 or more RFFs.

Non-linear parameter estimation

A naive way to estimate the non-linear parameters is via Bayesian optimization



- use the adjoint sensitivity to estimate derivative information
- estimate posterior using a variational approach

Sequential data

$$z = \begin{pmatrix} \langle v_1, \phi_1 \rangle & \dots & \langle v_1, \phi_M \rangle \\ \vdots & & \vdots \\ \langle v_n, \phi_1 \rangle & \dots & \langle v_n, \phi_M \rangle \end{pmatrix} \begin{pmatrix} q_1 \\ q_M \end{pmatrix} + e$$
$$= \Phi \mathbf{q} + e$$

Adding features, or incorporating new data is easy

- New features/basis vectors require new columns in Φ no new simulation is required
- New data adds rows to Φ each new data point necessitates one additional simulation.

Costs

Adjoint method:

- require *n* solves of the adjoint system to infer *f* .
- (essentially) insensitive to the number of basis functions used.
- The non-linear parameters (GP hyperparameters, PDE parameters) can be inferred in an outer-loop

MCMC:

- All parameters inferred together.
- Hard to say how many iterations will be required, but likely to grow with the number of parameters (and hence number of GP features).
- Number of iterations required largely independent of n.
- Derivative information generally helps, but may be unavailable (autodiff often unstable for PDE solvers)

Link to Green's function approach

Consider the linear system

$$\mathcal{L}u = f$$
 for $x \in \Omega$

The Green's function $G_y(x)$ satisfies

$$\mathcal{L}^*G_y(x) = \delta_y(x)$$
 for $x \in \Omega$

Link to Green's function approach

Consider the linear system

$$\mathcal{L}u = f$$
 for $x \in \Omega$

The Green's function $G_{y}(x)$ satisfies

$$\mathcal{L}^*G_y(x) = \delta_y(x)$$
 for $x \in \Omega$

Solution of the original problem is found by computing the convolution of G with f:

$$\begin{split} u(y) &= \langle \delta_y, u \rangle = \langle \mathcal{L}^* G_y, \ u \rangle \\ &= \langle G_y, \ \mathcal{L} u \rangle = \langle G_y, \ f \rangle = \int G_y(x) f(x) \mathrm{d} x. \end{split}$$

Link to Green's function approach

Consider the linear system

$$\mathcal{L}u = f$$
 for $x \in \Omega$

The Green's function $G_{\nu}(x)$ satisfies

$$\mathcal{L}^* G_y(x) = \delta_y(x)$$
 for $x \in \Omega$

Solution of the original problem is found by computing the convolution of G with f:

$$u(y) = \langle \delta_y, u \rangle = \langle \mathcal{L}^* G_y, u \rangle$$

= $\langle G_y, \mathcal{L}u \rangle = \langle G_y, f \rangle = \int G_y(x) f(x) dx.$

If $f \sim GP(0, k)$, then u is also distributed as a Gaussian process,

$$u \sim GP(0, k_u)$$

with covariance function

$$k_u(y,y') = \int G_y(x) \int G_{y'}(x')k(x,x')dx'dx.$$

$$k_u(y,y') = \int G_y(x) \int G_{y'}(x')k(x,x')dx'dx.$$

If G is known, then it may be possible to compute this analytically. Otherwise numerical methods must be used.

• Likely to be cheaper than the adjoint approach

$$k_u(y,y') = \int G_y(x) \int G_{y'}(x')k(x,x')dx'dx.$$

If G is known, then it may be possible to compute this analytically. Otherwise numerical methods must be used.

• Likely to be cheaper than the adjoint approach

If G is unknown, then need to approximate G before approximating the integral....

- Expensive, unstable...
- Poorly developed

$$k_u(y,y') = \int G_y(x) \int G_{y'}(x')k(x,x')dx'dx.$$

If G is known, then it may be possible to compute this analytically. Otherwise numerical methods must be used.

• Likely to be cheaper than the adjoint approach

If G is unknown, then need to approximate G before approximating the integral....

- Expensive, unstable...
- Poorly developed

In contrast, adjoint approach relies on

- ullet knowledge of the adjoint operator \mathcal{L}^*
- ability to solve adjoint systems numerically deploy modern finite element solvers (efficient, stable, and offer good error-control).

Recommendation: Use Green's function approach when G is known and covariance integral tractable.

Conclusions

Adjoints are useful

- can be automated
- requires n adjoint solves to infer the posterior
 - essentially insensitive to the number of basis functions used
- Gives numerically stable derivatives of the cost function with respect to other parameters, $\frac{dS}{dp}$ etc.
- Opportunities for additional efficiencies...
 - Efficient use of adjoint simulations
 - Multi-level approaches
 - Gradient based optimization
 - Sequential data
- Extension to system identification...

Ref: Gahungu et al. NeurIPS 2022, Smith et al. 2023, (forthcoming pre-prints).

Conclusions

Adjoints are useful

- can be automated
- requires n adjoint solves to infer the posterior
 - essentially insensitive to the number of basis functions used
- Gives numerically stable derivatives of the cost function with respect to other parameters, $\frac{dS}{dp}$ etc.
- Opportunities for additional efficiencies...
 - Efficient use of adjoint simulations
 - Multi-level approaches
 - Gradient based optimization
 - Sequential data
- Extension to system identification...

Ref: Gahungu et al. NeurIPS 2022, Smith et al. 2023, (forthcoming pre-prints).

Thank you for listening!

