Design for Calibration and History Matching for Complex Simulators

Richard Wilkinson, James Hensman

School of Mathematics and Statistics, University of Sheffield Medical School, University of Lancaster

April 5, 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Outline

- Calibration/history matching
- 2 ABC
- Surrogate modelling
- Oesign
 - Space filling designs are inefficient for calibration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Inverse problems

- For most simulators we specify parameters θ and i.c.s and the simulator, $f(\theta)$, generates output X.
- The inverse-problem: observe data D, estimate parameter values θ

э

Two approaches

Probabilistic calibration

Find the posterior distribution

 $\pi(heta|D) \propto \pi(heta)\pi(D| heta)$

for likelihood function $\pi(D|\theta) = \int \pi(D|X,\theta)\pi(X|\theta) dX$ which relates the simulator output, to the data,e.g.,

 $D = X + e + \epsilon$

where $e \sim N(0, \sigma_e^2)$ represents simulator discrepancy, and $\epsilon \sim N(0, \sigma_\epsilon^2)$ represents measurement error on the data

▲口▶ ▲圖▶ ▲理▶ ▲理▶ 三里……

Two approaches

Probabilistic calibration

Find the posterior distribution

 $\pi(heta|D) \propto \pi(heta)\pi(D| heta)$

for likelihood function $\pi(D|\theta) = \int \pi(D|X,\theta)\pi(X|\theta) dX$ which relates the simulator output, to the data,e.g.,

 $D = X + e + \epsilon$

where $e \sim N(0, \sigma_e^2)$ represents simulator discrepancy, and $\epsilon \sim N(0, \sigma_\epsilon^2)$ represents measurement error on the data

History matching

Find the plausible parameter set

$$\mathcal{P}_{ heta} = \{ heta: f(heta) \in \mathcal{P}_D\}$$

where \mathcal{P}_D is some plausible set of simulation outcomes that are consistent with simulator discrepancy and measurement error, e.g.,

$$\mathcal{P}_D = \{X : |D - X| \le 3(\sigma_e + \sigma_\epsilon)\}$$

▲□▶ ▲舂▶ ▲理▶ ▲理▶ ― 理 ―

Two approaches

Probabilistic calibration

Find the posterior distribution

 $\pi(heta|D) \propto \pi(heta)\pi(D| heta)$

for likelihood function $\pi(D|\theta) = \int \pi(D|X,\theta)\pi(X|\theta) dX$ which relates the simulator output, to the data,e.g.,

 $D = X + e + \epsilon$

where $e \sim N(0, \sigma_e^2)$ represents simulator discrepancy, and $\epsilon \sim N(0, \sigma_\epsilon^2)$ represents measurement error on the data **Calibration** finds a distribution

History matching

Find the plausible parameter set

$$\mathcal{P}_{ heta} = \{ heta: f(heta) \in \mathcal{P}_D\}$$

where \mathcal{P}_D is some plausible set of simulation outcomes that are consistent with simulator discrepancy and measurement error, e.g.,

$$\mathcal{P}_D = \{X : |D - X| \le 3(\sigma_e + \sigma_\epsilon)\}$$

Calibration finds a distribution representing plausible parameter values; **History matching** classifies parameter space as plausible or implausible.

Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for calibrating stochastic simulators

- they do not require explicit knowledge of the likelihood function
- inference is done using simulation from the model (they are 'likelihood-free').

ABC methods are popular in biological disciplines, particularly genetics. They are

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Simple to implement
- Intuitive
- Embarrassingly parallelizable
- Can usually be applied

Rejection ABC

Uniform Rejection Algorithm

- Draw θ from $\pi(\theta)$
- Simulate $X \sim f(\theta)$
- Accept θ if $\rho(D, X) \leq \epsilon$

Rejection ABC

Uniform Rejection Algorithm

- Draw θ from $\pi(\theta)$
- Simulate X ~ f(θ)
- Accept θ if $\rho(D, X) \leq \epsilon$

 ϵ reflects the tension between computability and accuracy.

- As $\epsilon \to \infty$, we get observations from the prior, $\pi(\theta)$.
- If $\epsilon = 0$, we generate observations from $\pi(\theta \mid D)$.

Rejection sampling is inefficient, but we can adapt other MC samplers such as MCMC and SMC.

Simple \rightarrow Popular with non-statisticians

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

$\epsilon = 10$

 $eta \sim U[-10, 10], \qquad X \sim N(2(heta+2) heta(heta-2), 0.1+ heta^2)$ $ho(D, X) = |D-X|, \qquad D=2$

◆□ → ◆□ → ◆三 → ◆三 → ○へ ⊙

 $\epsilon = 7.5$

 $\epsilon = 5$

 $\epsilon = 2.5$

 $\epsilon = 1$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If the model is expensive ... use a surrogate model/emulator.

If the model is expensive ... use a surrogate model/emulator.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

What should we approximate with the surrogate model?

simulator output

Likelihood function

If the model is expensive ... use a surrogate model/emulator.

What should we approximate with the surrogate model?

- simulator output
 - often easy to work with
 - often high dimensional
 - ▶ requires a global approximation, i.e., need to predict $f(\theta)$ at all θ of interest.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- if the simulator is stochastic, the distribution of $f(\theta)$ at fixed θ is often not Gaussian.
- Likelihood function

If the model is expensive ... use a surrogate model/emulator.

What should we approximate with the surrogate model?

- simulator output
 - often easy to work with
 - often high dimensional
 - ▶ requires a global approximation, i.e., need to predict $f(\theta)$ at all θ of interest.
 - if the simulator is stochastic, the distribution of $f(\theta)$ at fixed θ is often not Gaussian.
- Likelihood function
 - 1 dimensional surface
 - ▶ allows us to focus on the data, i.e., predict log $L(\theta|D_{obs})$ at all θ . The data D_{obs} is fixed

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

- hard to model
- hard to gain physical insights primarily useful for calibration

Likelihood estimation

Wilkinson 2013

It can be shown that ABC replaces the true likelihood $\pi(D|\theta)$ by an ABC likelihood

$$\pi_{ABC}(D|\theta) = \int \mathbb{I}_{\rho(D,X) < \epsilon} \pi(X|\theta) \mathrm{dX}$$

which we implicitly estimate using

$$\hat{\pi}_{ABC}(D| heta) pprox rac{1}{N} \sum \pi_{\epsilon}(D|X_i)$$
 where $X_i \sim \pi(X| heta)$

True likelihood and (implicit) ABC approximation, epsilon=1

(日) (部) (目) (日)

æ

Likelihood estimation

Wilkinson 2013

It can be shown that ABC replaces the true likelihood $\pi(D|\theta)$ by an ABC likelihood

$$\pi_{ABC}(D|\theta) = \int \mathbb{I}_{\rho(D,X) < \epsilon} \pi(X|\theta) \mathrm{dX}$$

which we implicitly estimate using

$$\hat{\pi}_{ABC}(D| heta) pprox rac{1}{N} \sum \pi_{\epsilon}(D|X_i)$$
 where $X_i \sim \pi(X| heta)$

True likelihood and (implicit) ABC approximation, epsilon=1

(日) (部) (目) (日)

æ

Likelihood estimation

Wilkinson 2013

It can be shown that ABC replaces the true likelihood $\pi(D|\theta)$ by an ABC likelihood

$$\pi_{ABC}(D|\theta) = \int \mathbb{I}_{\rho(D,X) < \epsilon} \pi(X|\theta) \mathrm{dX}$$

which we implicitly estimate using

$$\hat{\pi}_{ABC}(D| heta) pprox rac{1}{N} \sum \pi_{\epsilon}(D|X_i)$$
 where $X_i \sim \pi(X| heta)$

True likelihood and (implicit) ABC approximation, epsilon=1

We can model $\log L(\theta) = \log \pi_{ABC}(D|\theta)$ and use this to find the posterior.

(日) (個) (E) (E) (E)

Waves

We usually carry out history matching and ABC in a sequential manner

- Start with some larger than desired tolerance $\epsilon_{\rm 0},$ find the plausible region
- Decrease the tolerance through a sequence of tolerances ε₀ ≤ ε₁ ≤ ε_n until the desired accuracy is achieved.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We are left needing to solve a sequence of classification problems.

Classification

In both history-matching and ABC, there is an element of classification, with parameters labelled as plausible or implausible, depending on the simulator output, ie, we try to find

 $p(heta) = \mathbb{P}(heta \in \mathcal{P})$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

where \mathcal{P} is the set of plausible parameters.

Classification

In both history-matching and ABC, there is an element of classification, with parameters labelled as plausible or implausible, depending on the simulator output, ie, we try to find

$$p(heta) = \mathbb{P}(heta \in \mathcal{P})$$

where \mathcal{P} is the set of plausible parameters.

 For history matching with deterministic simulators we often use something like

$$\mathcal{P} = \{\theta : \|f(\theta) - D\| \le \delta\}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

For probabilistic calibration, we can use a likelihood based criterion

$$\mathcal{P} = \{ heta : |I(\hat{ heta}) - I(heta)| < T \}$$

where $l(\theta)$ is the log-likelihood, and $\hat{\theta}$ the mle. If we decide θ is implausible, we set

$$\pi(\theta|y) = 0$$

Using this criteria is equivalent to using the modified likelihood

$$\widetilde{L}(\theta) \propto \exp(I(\theta)) \mathbb{I}_{I(\hat{ heta}) - I(\theta) < T}$$

Our hope is that

$$ilde{\pi}(heta|D) pprox \pi(heta|D)$$

Design

The probability

$$p(heta) = \mathbb{P}(heta \in \mathcal{P}_{ heta})$$

is based upon a our GP model of the simulator or likelihood

 $f(\theta) \sim GP(m(\cdot), c(\cdot, \cdot))$

Design

The probability

$$\mathfrak{p}(heta) = \mathbb{P}(heta \in \mathcal{P}_{ heta})$$

is based upon a our GP model of the simulator or likelihood

1

$$f(\theta) \sim GP(m(\cdot), c(\cdot, \cdot))$$

The key determinant of emulator accuracy is the design used to train the GP

$$D_n = \{ heta_i, f(heta_i)\}_{i=1}^N$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Usual design choices are space filling designs

• e.g., Maximin latin hypercubes, Sobol sequences

Design

The probability

$$\mathfrak{p}(heta) = \mathbb{P}(heta \in \mathcal{P}_ heta)$$

is based upon a our GP model of the simulator or likelihood

$$f(\theta) \sim GP(m(\cdot), c(\cdot, \cdot))$$

The key determinant of emulator accuracy is the design used to train the GP

$$D_n = \{ heta_i, f(heta_i)\}_{i=1}^N$$

Usual design choices are space filling designs

• e.g., Maximin latin hypercubes, Sobol sequences

Calibration doesn't need a global approximation to the simulator - this is wasteful

Entropic designs

Instead build a sequential design $\theta_1, \theta_2, \ldots$ using the current classification

$$p(heta) = \mathbb{P}(heta \in \mathcal{P}_{ heta} | D_n)$$

to guide the choice of design points

Entropic designs

Instead build a sequential design $\theta_1, \theta_2, \ldots$ using the current classification

$$p(heta) = \mathbb{P}(heta \in \mathcal{P}_{ heta} | D_n)$$

to guide the choice of design points First idea: add design points where we are most uncertain

• The entropy of the classification surface is

$$E(heta) = -p(heta) \log p(heta) - (1 - p(heta)) \log(1 - p(heta))$$

• Choose the next design point where we are most uncertain.

$$\theta_{n+1} = \arg \max E(\theta)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Toy 1d example $f(\theta) = \sin \theta$

Toy 1d example $f(\theta) = \sin \theta$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Toy 1d example $f(\theta) = \sin \theta$

Add a new design point at the point of greatest entropy

∃ のへで

(日) (部) (目) (目)

Toy 1d example $f(\theta) = \sin \theta$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□▶

Toy 1d example $f(\theta) = \sin \theta$

◆□ → ◆□ → ◆三 → ◆三 → ○へ ⊙

Toy 1d example $f(\theta) = \sin \theta$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Toy 1d example $f(\theta) = \sin \theta$ - After 10 and 20 iterations

This criterion spends too long resolving points at the edge of the classification region.

not enough exploration

Expected average entropy Chevalier *et al.* 2014

Instead, we can find the average entropy of the classification surface

$$E_n = \int E(\theta) \mathrm{d}\theta$$

where n denotes it is based on the current design of size n.

• Choose the next design point, θ_{n+1} , to minimise the expected average entropy

$$heta_{n+1} = rg \min J_n(heta)$$

where

$$J_n(\theta) = \mathbb{E}(E_{n+1}|\theta_{n+1} = \theta)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Solving the optimisation problem

Finding θ which minimises $J_n(\theta) = \mathbb{E}(E_{n+1}|\theta_{n+1} = \theta)$ is expensive.

• Even for 3d problems, grid search is prohibitively expensive

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• Dynamic grids help

Solving the optimisation problem

Finding θ which minimises $J_n(\theta) = \mathbb{E}(E_{n+1}|\theta_{n+1} = \theta)$ is expensive.

- Even for 3d problems, grid search is prohibitively expensive
- Dynamic grids help

We can use Bayesian optimization to find the optima:

- Evaluate $J_n(\theta)$ at a small number of locations
- 2 Build a GP model of $J_n(\cdot)$
- Choose the next θ at which to evaluate J_n so as to minimise the expected-improvement (EI) criterion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Return to step 2.

History match

Can we learn the following plausible set?

- A sample from a GP on \mathbb{R}^2 .
- Find x s.t. -2 < f(x) < 0

Iteration 10 Left= $p(\theta)$, middle= $E(\theta)$, right = $\tilde{J}(\theta)$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 ∽੧<⊙

Iteration 10 Left= $p(\theta)$, middle= $E(\theta)$, right = $\tilde{J}(\theta)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Iteration 10 Left= $p(\theta)$, middle= $E(\theta)$, right = $\tilde{J}(\theta)$

Iteration 15

Left= $p(\theta)$, middle= $E(\theta)$, right = $\tilde{J}(\theta)$

◆□ → ◆□ → ◆三 → ◆三 → ○へ ⊙

Iterations 20 and 24

-2

Video

Conclusions

- For complex models, surrogate-modelling approaches are often necessary
- Target of approximation: likelihood vs simulator output
 - likelihood is 1d surface, focussed on information in the data, but can be hard to model
 - Simulator output is multi-dimensional, and requires us to build a global approximation, and can be poorly modelled by a GP. But can be easier to model when Gaussian assumption appropriate.
- Good design can lead to substantial improvements in accuracy
 - Design needs to be specific to the task required Space-filling designs are inefficient for calibration
 - Average entropy designs give good trade-off between exploration and defining the plausible region

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Conclusions

- For complex models, surrogate-modelling approaches are often necessary
- Target of approximation: likelihood vs simulator output
 - likelihood is 1d surface, focussed on information in the data, but can be hard to model
 - Simulator output is multi-dimensional, and requires us to build a global approximation, and can be poorly modelled by a GP. But can be easier to model when Gaussian assumption appropriate.
- Good design can lead to substantial improvements in accuracy
 - Design needs to be specific to the task required Space-filling designs are inefficient for calibration
 - Average entropy designs give good trade-off between exploration and defining the plausible region

Thank you for listening!