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Outline

© Calibration/history matching
@ ABC

© Surrogate modelling
@ Design

» Space filling designs are inefficient for calibration



Inverse problems

@ For most simulators we specify parameters 6 and i.c.s and the
simulator, f(0), generates output X.

@ The inverse-problem: observe data D, estimate parameter values 6
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Two approaches

Probabilistic calibration
Find the posterior distribution

7m(0|D) o< w(0)m(D|0)

for likelihood function

m(DI|0) = fﬁ(D\X,H)W(X\G)dX
which relates the simulator
output, to the data,e.g.,

D=X+e+e

where e ~ N(0, 02) represents
simulator discrepancy, and

€ ~ N(0,02) represents
measurement error on the data
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History matching
Find the plausible parameter set

Po=1{0:1(0) € Pp}

where Pp is some plausible set of
simulation outcomes that are
consistent with simulator
discrepancy and measurement
error, e.g.,

Pp={X:|D—-X|<3(ce+0e)}



Two approaches

Probabilistic calibration History matching
Find the posterior distribution Find the plausible parameter set
7(0|D) x w(0)w(D|6) Py =140:1(0) € Pp}
for likelihood function where Pp is some plausible set of
m(D|0) = [ =(D|X,0)r(X[0)dX simulation outcomes that are
which relates the simulator consistent with simulator
output, to the data,e.g., discrepancy and measurement
error, e.g.,
D=X+e+e
where e ~ N(0, 02) represents Pp ={X:|D—X| <3(0e+0c)}

simulator discrepancy, and

€ ~ N(0,02) represents

measurement error on the data

Calibration finds a distribution representing plausible parameter values;
History matching classifies parameter space as plausible or implausible.



Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating stochastic simulators

@ they do not require explicit knowledge of the likelihood function

e inference is done using simulation from the model (they are
‘likelihood-free').

ABC methods are popular in biological disciplines, particularly genetics.
They are

Simple to implement

@ Intuitive

@ Embarrassingly parallelizable
°

Can usually be applied



Rejection ABC

Uniform Rejection Algorithm
@ Draw 6 from 7(6)
e Simulate X ~ f(6)
@ Accept 0 if p(D,X) < e




Rejection ABC

Uniform Rejection Algorithm
@ Draw 6 from 7(6)
e Simulate X ~ f(6)
@ Accept 0 if p(D,X) < e

€ reflects the tension between computability and accuracy.

@ As e — 00, we get observations from the prior, 7(6).

e If e =0, we generate observations from 7(6 | D).

Rejection sampling is inefficient, but we can adapt other MC samplers
such as MCMC and SMC.

Simple — Popular with non-statisticians



theta vs D Density

Density
00 02 04 06 08 10 12 14

0 ~ U[-10,10], X ~ N(2(8 +2)8(6 — 2),0.1 + 6?)
p(D, X) = |D — X]|, D=2
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Density

theta vs D
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e=25

Density

theta vs D
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Density

theta vs D
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Surrogate modelling

If the model is expensive ... use a surrogate model /emulator.
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What should we approximate with the surrogate model?

@ simulator output
» often easy to work with
» often high dimensional

» requires a global approximation, i.e., need to predict f(0) at all 6 of
interest.

» if the simulator is stochastic, the distribution of () at fixed 6 is
often not Gaussian.

o Likelihood function



Surrogate modelling

If the model is expensive ... use a surrogate model /emulator.
What should we approximate with the surrogate model?

@ simulator output
» often easy to work with
» often high dimensional

» requires a global approximation, i.e., need to predict f(0) at all 6 of
interest.

» if the simulator is stochastic, the distribution of () at fixed 6 is
often not Gaussian.
o Likelihood function

» 1 dimensional surface

» allows us to focus on the data, i.e., predict log L(6]|Dops) at all 6. The
data D,y is fixed

> hard to model

> hard to gain physical insights - primarily useful for calibration



Likelihood estimation

Wilkinson 2013
It can be shown that ABC replaces the true likelihood 7(D|#) by an ABC
likelihood

magc(D]0) = /Hp(D,X)<€7T(X|0)dX

which we implicitly estimate using

#agc(D]) ~ Zwe D|X;) where X; ~ m(X|6)

True likelihood and (implicit) ABC approximation, epsilon=1
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Likelihood estimation
Wilkinson 2013

It can be shown that ABC replaces the true likelihood 7(D|#) by an ABC
likelihood

wagc(D|0) = /HP(D7x)<€7T(X|0)dX
which we implicitly estimate using

#agc(D]) ~ Zwe D|X;) where X; ~ m(X|6)

True likelihood and (implicit) ABC approximation, epsilon=1
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We can model log L(6) = log magc(D|#) and use this to find the posterior.




Waves

We usually carry out history matching and ABC in a sequential manner

@ Start with some larger than desired tolerance ¢q, find the plausible
region

@ Decrease the tolerance through a sequence of tolerances ¢g < €1 < ¢
until the desired accuracy is achieved.

We are left needing to solve a sequence of classification problems.



Classification

In both history-matching and ABC, there is an element of classification,
with parameters labelled as plausible or implausible, depending on the

simulator output, ie, we try to find
p(0) =P(0 € P)

where P is the set of plausible parameters.



Classification

In both history-matching and ABC, there is an element of classification,
with parameters labelled as plausible or implausible, depending on the

simulator output, ie, we try to find
p(0) =P(0 € P)

where P is the set of plausible parameters.

@ For history matching with deterministic simulators we often use

something like
P ={0:1f(0) - DI <4}



For probabilistic calibration, we can use a likelihood based criterion
P={0:]1(0)—I(0)| < T}

where /(6) is the log-likelihood, and @ the mle. If we decide 6 is
implausible, we set
m(fly) =0

Using this criteria is equivalent to using the modified likelihood
L(6) oc exp(1(0)) gy iay< T

Our hope is that
7(0|D) ~ 7(0|D)
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Design

The probability
p(0) =P(0 € Py)

is based upon a our GP model of the simulator or likelihood

F(0) ~ GP(m(-), c(-,-))



Design

The probability
p(6) = B(0 € Py)

is based upon a our GP model of the simulator or likelihood

The key determinant of emulator accuracy is the design used to train the
GP

Dy = {6, F(6:)}1L
Usual design choices are space filling designs

@ e.g., Maximin latin hypercubes, Sobol sequences



Design

The probability
p(6) = B(0 € Py)

is based upon a our GP model of the simulator or likelihood

The key determinant of emulator accuracy is the design used to train the
GP
Dy = {6, F(6:)}1L
Usual design choices are space filling designs
@ e.g., Maximin latin hypercubes, Sobol sequences

Calibration doesn't need a global approximation to the simulator - this is
wasteful



Entropic designs

Instead build a sequential design 601, 0>, ... using the current classification
p(0) = P(6 € Py|Dy)

to guide the choice of design points



Entropic designs

Instead build a sequential design 601, 0>, ... using the current classification
p(0) = P(6 € Py|Dy)

to guide the choice of design points
First idea: add design points where we are most uncertain

@ The entropy of the classification surface is
E(0) = —p(0)log p(0) — (1 — p(0)) log(1 — p(0))
@ Choose the next design point where we are most uncertain.

On+1 = argmax E(0)



Toy 1d example f(6) = sin6




Toy 1d example f(0) = siné
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Toy 1d example f(#) = sin6
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Toy 1d example f(6) = sin6
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Toy 1d example f(6) = sin6
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Toy 1d example f(#) = sinf - After 10 and 20 iterations

Iteration10

prob. of matching data

teration20

This criterion spends too long resolving points at the edge of the
classification region.

@ not enough exploration



Expected average entropy
Chevalier et al. 2014

Instead, we can find the average entropy of the classification surface

E, = / E(0)d0

where n denotes it is based on the current design of size n.

@ Choose the next design point, 6,41, to minimise the expected
average entropy
Ont+1 = argmin J,(0)

where
J,,(Q) = IE:(En-i-lwn-i-l = 9)



Toy 1d example f(6) = sin 6 - Expected entropy
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Toy 1d example f(#) = sin 6 - Expected entropy
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Solving the optimisation problem

Finding 6 which minimises J,(0) = E(Ep+1|0n+1 = 0) is expensive.
@ Even for 3d problems, grid search is prohibitively expensive
@ Dynamic grids help



Solving the optimisation problem

Finding 6 which minimises J,(0) = E(Ep+1|0n+1 = 0) is expensive.
@ Even for 3d problems, grid search is prohibitively expensive

@ Dynamic grids help

We can use Bayesian optimization to find the optima:

O Evaluate J,(#) at a small number of locations
@ Build a GP model of J,(-)

@ Choose the next 0 at which to evaluate J, so as to minimise the
expected-improvement (EI) criterion

© Return to step 2.



History match
Can we learn the following plausible set?

e A sample from a GP on R?.
e Find xst. —2<f(x)<0

-4 -2 o 2 4



[teration 10

Left=p(0), middle= E(6), right = J(0)
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[teration 10

Left=p(0), middle= E(6), right = J(0)




lteration 15
Left=p(0), middle= E(6), right = J(0)
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http://youtu.be/FF3KhKh6NHg

Conclusions

@ For complex models, surrogate-modelling approaches are often
necessary
@ Target of approximation: likelihood vs simulator output
» likelihood is 1d surface, focussed on information in the data, but can
be hard to model
» Simulator output is multi-dimensional, and requires us to build a
global approximation, and can be poorly modelled by a GP. But can
be easier to model when Gaussian assumption appropriate.
@ Good design can lead to substantial improvements in accuracy
» Design needs to be specific to the task required - Space-filling designs
are inefficient for calibration
» Average entropy designs give good trade-off between exploration and
defining the plausible region
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» likelihood is 1d surface, focussed on information in the data, but can
be hard to model
» Simulator output is multi-dimensional, and requires us to build a
global approximation, and can be poorly modelled by a GP. But can
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Thank you for listening!



