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Inference for complex models

——

——

ABC: given data D = f (θ) + e, find π(θ|D)

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

Works for any simulator f – no knowledge required
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Air pollution

7 million people die every year from exposure to air pollution, the majority
in LMICs.

The UK government estimates the annual mortality of human-made air
pollution to be 28,000 to 36,000 deaths, and costs UK ∼£1010



Kampala and AirQo



Modelling air pollution

Model pollution concentration u(x , t) at location x at time t.
We want to

infer air pollution (and predict future pollution levels)

infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do
this.

Instead build data models that know some physics

∂u

∂t
= ∇.(p1u) +∇.(p2∇u)− p3u + f

Here f (x , t) represents the pollution source.
Given noisy measurements of pollution levels zi = hi (u) + ei can we infer

the concentration field u(x , t)?

the source f (x , t)?

. . .
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General linear systems
Lu = f



Linear systems with unknown parameters

Consider

Lu = f

where

L = linear operator

f = forcing function.

u dependent quantity, e.g. pollution concentration.

Finding u given L and f is the forward problem.

Inverse problem: infer u, f given noisy observations of u

z = h(u) + N(0,Σ).

Note: MCMC likely to be prohibitively expensive: each iteration requires
a solution of the forward problem.
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Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

min
f

(z − h(u))>(z − h(u))

subject to Lu = f .

Bayes: find
π(f |z ,L).

Adjoints can help in both cases

We can solve both problems with n simulator evaluations, where
n =number of data points.
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What is an adjoint?
See Estep 2004

Suppose U and V are Hilbert spaces

i.e. vector spaces with an inner product 〈u, u′〉,
and L : U 7→ V a linear operator between spaces.

Reisz representation theorem: any bounded linear functional on V, v∗ say,
can be written as

v∗(·) = 〈·, v〉 for some v ∈ V

Define F : U → R by
F : u 7→ 〈Lu, v〉V .

F is a bounded linear functional on U , thus F (·) = 〈·, u〉U for some u ∈ U .

Thus for all v ∈ V we’ve associated a unique u ∈ U .

L∗ : v 7→ u.

L∗ is the adjoint of L, and is itself a bounded linear operator.
By definition

〈Lu, v〉 = 〈u,L∗v〉 the ‘bilinear identity’



What is an adjoint?
See Estep 2004

Suppose U and V are Hilbert spaces

i.e. vector spaces with an inner product 〈u, u′〉,
and L : U 7→ V a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on V, v∗ say,
can be written as

v∗(·) = 〈·, v〉 for some v ∈ V

Define F : U → R by
F : u 7→ 〈Lu, v〉V .

F is a bounded linear functional on U , thus F (·) = 〈·, u〉U for some u ∈ U .

Thus for all v ∈ V we’ve associated a unique u ∈ U .

L∗ : v 7→ u.

L∗ is the adjoint of L, and is itself a bounded linear operator.
By definition

〈Lu, v〉 = 〈u,L∗v〉 the ‘bilinear identity’



What is an adjoint?
See Estep 2004

Suppose U and V are Hilbert spaces

i.e. vector spaces with an inner product 〈u, u′〉,
and L : U 7→ V a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on V, v∗ say,
can be written as

v∗(·) = 〈·, v〉 for some v ∈ V

Define F : U → R by
F : u 7→ 〈Lu, v〉V .

F is a bounded linear functional on U , thus F (·) = 〈·, u〉U for some u ∈ U .

Thus for all v ∈ V we’ve associated a unique u ∈ U .

L∗ : v 7→ u.

L∗ is the adjoint of L, and is itself a bounded linear operator.
By definition

〈Lu, v〉 = 〈u,L∗v〉 the ‘bilinear identity’



What is an adjoint?
See Estep 2004

Suppose U and V are Hilbert spaces

i.e. vector spaces with an inner product 〈u, u′〉,
and L : U 7→ V a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on V, v∗ say,
can be written as

v∗(·) = 〈·, v〉 for some v ∈ V

Define F : U → R by
F : u 7→ 〈Lu, v〉V .

F is a bounded linear functional on U , thus F (·) = 〈·, u〉U for some u ∈ U .

Thus for all v ∈ V we’ve associated a unique u ∈ U .

L∗ : v 7→ u.

L∗ is the adjoint of L, and is itself a bounded linear operator.
By definition

〈Lu, v〉 = 〈u,L∗v〉 the ‘bilinear identity’



What is an adjoint?
See Estep 2004

Suppose U and V are Hilbert spaces

i.e. vector spaces with an inner product 〈u, u′〉,
and L : U 7→ V a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on V, v∗ say,
can be written as

v∗(·) = 〈·, v〉 for some v ∈ V

Define F : U → R by
F : u 7→ 〈Lu, v〉V .

F is a bounded linear functional on U , thus F (·) = 〈·, u〉U for some u ∈ U .

Thus for all v ∈ V we’ve associated a unique u ∈ U .

L∗ : v 7→ u.

L∗ is the adjoint of L, and is itself a bounded linear operator.

By definition

〈Lu, v〉 = 〈u,L∗v〉 the ‘bilinear identity’



What is an adjoint?
See Estep 2004

Suppose U and V are Hilbert spaces

i.e. vector spaces with an inner product 〈u, u′〉,
and L : U 7→ V a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on V, v∗ say,
can be written as

v∗(·) = 〈·, v〉 for some v ∈ V

Define F : U → R by
F : u 7→ 〈Lu, v〉V .

F is a bounded linear functional on U , thus F (·) = 〈·, u〉U for some u ∈ U .

Thus for all v ∈ V we’ve associated a unique u ∈ U .

L∗ : v 7→ u.

L∗ is the adjoint of L, and is itself a bounded linear operator.
By definition

〈Lu, v〉 = 〈u,L∗v〉 the ‘bilinear identity’



Example 0

In the finite dimensional case,

Lu = Au for some matrix A.

Then
L∗v = A>v

That is
〈Au, v〉 = 〈u,A>v〉
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Efficient inference

Lu = f , zi = hi (u) + e

If the observation operator is linear

hi (u) = 〈hi , u〉

we can consider the n adjoint systems

L∗vi = hi for i = 1, . . . , n.

Then

hi (u) = 〈hi , u〉 = 〈L∗vi , u〉 = 〈vi ,Lu〉
= 〈vi , f 〉,

by the bilinear identity.
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zi = hi (u) + ei = 〈vi , f 〉+ ei

where L∗vi = hi

Suppose f is a parametric model with a linear dependence upon some
unknown parameters q:

f (·) =
M∑

m=1

qmφm(·) (1)

then hi (u) = 〈vi ,
M∑

m=1

qmφm〉 =
M∑

m=1

qm〈vi , φm〉.

A linear model!



zi = hi (u) + ei = 〈vi , f 〉+ ei

where L∗vi = hi

Suppose f is a parametric model with a linear dependence upon some
unknown parameters q:

f (·) =
M∑

m=1

qmφm(·) (1)

then hi (u) = 〈vi ,
M∑

m=1

qmφm〉 =
M∑

m=1

qm〈vi , φm〉.

A linear model!



The complete observation vector z can then be written as

z =

〈v1, φ1〉 . . . 〈v1, φM〉
...

...
〈vn, φ1〉 . . . 〈vn, φM〉


 q1

qM

+ e (2)

= Φq + e

Thus

min
f

S(f ) = (z − h(u))>(z − h(u))

subject to Lu = f

is equivalent to

min
q

S(q) = (z − Φq)>(z − Φq)

The solution is
q̂ = (Φ>Φ)−1Φ>z

with Var(q̂) = σ2(Φ>Φ)−1 when ei are uncorrelated and homoscedastic
with variance σ2.
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In a Bayesian setting, if we assume a priori that q ∼ NM(µ0,Σ0), then
the posterior for q given z (and other parameters) is

q | z ∼ NM(µn,Σn) (3)

where

µn = Σn(
1

σ2
Φ>z + Σ−1

0 µ0), Σn =

(
1

σ2
Φ>Φ + Σ−1

0

)−1

. (4)



Gaussian Processes

Suppose we model unknown function f = {f (x) : x ∈ X} as a Gaussian
process (GP)

f ∼ GP(m, k)

where we need to specify the prior mean and covariance functions

Ef (x) = m(x), Cov(f (x), f (x ′)) = k(x , x ′).



Parameterizing GPs

f (x) ∼ GP(m(x), k(x , x ′)).

How can we use GPs within the adjoint framework developed earlier?

Let F be the RKHS (function space) associated with kernel k , i.e.,
f ∈ F
Consider {φ1(x), φ2(x), . . .} an orthonormal basis for F .

We can then approximate f using a truncated basis expansion

f (x) ≈ fq(x) =
M∑
j=1

qiφi (x) where a priori qi ∼ N(0, λ2
i )

= Φq + e

We’ve approximated the GP by a finite dimensional linear model.
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Choice of basis

f (x) =
∞∑
j=1

qiφi (x)

Random Fourier features: φi (x) = cos(wix + bi ) where
wi , bi ∼ p(·)

Mercer basis: φi (x) = λiψ(x) where λi , φi (·) are eigenpairs of

Tk(f )(·) =

∫
X
k(x , ·)f (x)dx .

Laplacian basis: useful for non-Euclidean domains...
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Example 1: Ordinary differential equation
Consider the ordinary differential equation

−Dü + νu̇ + u = f (t) with u(0) = u̇(0) = 0.

Use the bilinear identity to find the adjoint of

Lu = (−D d2

dt2
+ ν

d

dt
+ 1)u with u(0) = u̇(0) = 0

〈Lu, v〉 =

∫ T

0
Lu(t)v(t)dt =

∫ T

0
(−Dü + νu̇ + u)vdt

= [−Du̇v ]T0 +

∫ T

0
Du̇v̇dt + [νuv ]T0 −

∫ T

0
νuv̇dt +

∫ T

0
uvdt

= [Duv̇ ]T0 −
∫ T

0
Duv̈dt −

∫ T

0
νuv̇dt +

∫ T

0
uvdt

=

∫ T

0
(−Dv̈ − νv̇ + v)udt when v(T ) = v̇(T ) = 0

= 〈u,L∗v〉
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Example 1: Posterior mean and 95% CI (blue), true (red)
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top: n = 10 data
points, M = 100
basis vectors

bottom: n = 100
and M = 100

Results required 10 and
100 ODE solves
respectively.



Example 1: Too few features
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NB: overconfident and
wrong when M = 10 -
misspecified model!

We need to include
enough features to have
sufficient modelling
flexibility.

Using additional features
doesn’t require
additional ODE solves.
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MCMC is fine as long as you have a small number of features.
But even with only 10 features, we need ∼ 1000s of ODE solves vs 10
ODE solves for the adjoint method.

0 2500 5000 7500 10000 12500 15000 17500 20000
Iterations
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MCMC takes longer to converge when we use more features.



Example 2: PDE
Advection-diffusion-reaction is a linear operator:

Lu =
∂u

∂t
−∇.(p1u)−∇.(p2∇u) + p3u

Forward problem: solve (for some initial and boundary conditions)

Lu = f on X × [0,T ].

Inverse problem: assume

f (x , t) ∼ GP(m, kλ((x , t), (x ′, t ′)))

and estimate q given zi = 〈hi , u〉+ N(0, σ).
Typically hi will be a sensor function that might average the pollution at
a specific location over a short window

〈hi , u〉 =
1

|T |

∫
T
u(xi , t)dt
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Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

L∗v = −∂v
∂t
− p1.∇v −∇ · (p2∇v) + p3u.

For n observations we need n adjoint equations!

L∗vi = hi in X × [0,T ] for i = 1, . . . , n.

If we use initial and boundary conditions

u(x , 0) = 0 for x ∈ X and ∇nu = 0 for x ∈ ∂X

then the final and boundary conditions on the adjoint system are

vi (x ,T ) = 0 for x ∈ X
p1vi (x , t) + p2∇vi (x , t) = 0 for x ∈ ∂Ω and t ∈ [0,T ].
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Results: n = 20 (4 sensors) and n = 80 (16), noise =10%
Posterior mean of time slice u(x , 5) - more sensors, improved estimates!
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Conclusions
Adjoints of linear systems

an intrusive method; development does require some work but can be
automated

Requires n adjoint solves to infer the posterior
I essentially insensitive to the number of basis functions used
I In contrast, MCMC requires a typically an a priori unknown number of

simulations (but is largely independent of n).

Gives numerically stable derivatives of the cost function with respect
to other parameters, dS

dp etc.

Opportunities for additional efficiencies...
I Efficient use of adjoint simulations
I Multi-level approaches
I Gradient based optimization
I Sequential data

Ref: Gahungu et al. NeurIPS 2022, plus forthcoming pre-prints.

Thank you for listening!
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Link to Green’s function approach
Consider the linear system

Lu = f for x ∈ Ω

The Green’s function for this system, Gy (x), satisfies

L∗Gy (x) = δy (x) for x ∈ Ω

Solution of the original problem is found by computing the convolution of
G with f :

u(y) = 〈δy , u〉 = 〈L∗Gy , u〉

= 〈Gy , Lu〉 = 〈Gy , f 〉 =

∫
Gy (x)f (x)dx .

If f ∼ GP(0, k), then u is also distributed as a Gaussian process,

u ∼ GP(0, ku)

with covariance function

ku(y , y ′) =

∫
Gy (x)

∫
Gy ′(x ′)k(x , x ′)dx ′dx .
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ku(y , y ′) =

∫
Gy (x)

∫
Gy ′(x ′)k(x , x ′)dx ′dx .

If G is known then sometimes it is possible to compute this analytically.
Otherwise numerical methods must be used.

Likely to be cheaper than the adjoint approach

If G is unknown, then need to approximate G before approximating the
integral....

Expensive, unstable...

Poorly developed

In contrast, our approach relies on

existence of the adjoint operator L∗

ability to solve adjoint systems numerically - deploy modern finite
element solvers (efficient, stable, and offer good error-control).

Recommendation: Use Green’s function approach only when G known
and covariance integral tractable.
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Effect of length scale, λ = 5, 2, 1
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Example 2: Results
Mean square error vs number of features and sensors

Median MSE as a function of number of sensors and RFFs.
Sensors Features

10 50 100 200 300 500
1 3.42 (2.82,4.39) 3.27 (3.13,3.38) 3.24 (3.10,3.37) 3.27 (3.17,3.44) 3.24 (3.12,3.36) 3.27 (3.17,3.35)
4 7.12 (1.57,28.81) 2.39 (2.06,2.62) 2.41 (2.13,2.60) 2.45 (2.32,2.57) 2.50 (2.41,2.69) 2.53 (2.32,2.60)
9 2.38 (1.41,4.40) 2.12 (1.48,3.98) 1.70 (1.49,2.07) 1.48 (1.40,1.72) 1.47 (1.32,1.61) 1.45 (1.40,1.50)
16 1.73 (1.23,3.28) 3.99 (2.32,10.90) 2.18 (1.72,3.54) 1.3 (1.02,1.68) 1.12 (0.98,1.37) 1.12 (1.02,1.21)
25 1.35 (1.19,3.09) 8.93 (4.92,39.86) 4.36 (2.53,8.20) 1.86 (1.43,2.75) 1.35 (1.07,1.81) 1.05 (0.89,1.45)
25 (MH) 3.27 (1.73,6.12) - - - - -

MH algorithm did not converge after 20,000 iterations for 50 or more RFFs.



Non-linear parameter estimation

A naive way to estimate the non-linear parameters is via Bayesian
optimization iteration
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Preprint showing how to use the adjoint sensitivity soon....



Example 1: Matrix system

Suppose X = Y = Rd . A linear operator Lp : X → Y can be written as

Lpx = Apx where Ap ∈ Rd

where Ap depends on unknown parameters p.

The forward problem is solving the square linear system Apx = f , i.e.,
xp,q = A−1

p f .

The adjoint operator is
L∗py = A>p y

as we can see that

〈Apx , y〉 = (Apx)>y

= x>(A>y)

= 〈x ,A>p y〉
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Sensitivity

Consider the quantity of interest (QoI)

h(x) ≡ 〈g , x〉 = g>x

for some g ∈ Rd , where x is the solution to h(x , p) := f − Ax = 0.

We want to compute dg
dp (as then we can compute dS

dp (p, q))

Define Lagrangian the

L = g>x + y>h(x , p)

Think of y ∈ Rd as Lagrange multipliers.
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L = g>x + y>h(x , p)

Differentiating with respect to p gives

dL

dp
= g>

dx

dp
+ y>(

dh

dx

dx

dp
+

dh

dp
)

This is true for all y , so if we set g> + y> dh
dx = 0 then we get

dL

dp
=

dg

dp
= y>

dh

dp

= y>(
df

dp
− dA

dp
x)

where A>y = g

This doesn’t require dx
dp , but does need solutions to the forward Ax = f

and adjoint systems A>y = g .

Autodiff software (eg TensorFlow, JAX etc) will give us this, but can
be unreliable for differential equations with long iterative loops
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Non-identifiable linear model
Let

Ap =

(
2 + p2

2 −1
1 1 + p2

1

)
and fq =

(
q1

q2

)
= q1

(
1
0

)
+ q2

(
0
1

)
and suppose we’re given 4 observations with

G =

(
2 1 0 1
1 2 1 0

)

Given any dataset we can learn q (given p) with a single adjoint solve.
We can also compute the gradient of S(p, q̂) wrt p, but in this case

dS

dp
= 0 ∀ p.

and so p is unidentifiable.
Consider the solution to the unconstrained optimization problem.

x∗ = arg min
x

(z − G>x)>(z − G>x)

The basis functions used for f form a complete basis for R2, and we can
always find a q so that Apx

∗ = fq (for all p as Ap is invertible).
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