Adjoint-aided inference of Gaussian process driven differential equations

Paterne Gahungu ${ }^{1}$, Christopher Lanyon ${ }^{2}$, Mauricio Alvarez ${ }^{3}$, Engineer Bainomugisha ${ }^{4}$, Michael Smith ${ }^{2}$ Richard Wilkinson ${ }^{5}$

${ }^{1}$ Department of Computer Science, University of Burundi
${ }^{2}$ Department of Computer Science, University of Sheffield
${ }^{3}$ Department of Computer Science, University of Manchester
${ }^{4}$ Department of Computer Science, Makerere University
${ }^{5}$ School of Mathematical Sciences, University of Nottingham

March 2023

Inference for complex models

> Nature. 2002 Apr 18;416(6882):726-9. doi: 10.1038/416726a.
Using the fossil record to estimate the age of the last common ancestor of extant primates

Simon Tavaré ${ }^{1}$, Charles R Marshall, Oliver Will, Christophe Soligo, Robert D Martin

Syst Biol. 2011 Jan; 60(1): 16-31.
PMCID: PMK
Published online 2010 Nov 4. doi: $10,1093 /$ sysbio/syg054
Dating Primate Divergences through an Integrated Analysis of Palaeontological and Molecular Data

Bichard D. Wilkinson,,1, Michael E. Steiper ${ }^{2,3,4,5}$ Christophe Solligo ${ }^{6}$ Robert D. Martin, ${ }^{7}$ Zheng Yang, ${ }^{8}$ anc Simon Tavara ${ }^{9}$

Inference for complex models

> Nature. 2002 Apr 18;416(6882):726-9. doi: 10.1038/416726a.

Using the fossil record to estimate the age of the last common ancestor of extant primates

Simon Tavaré 1, Charles R Marshall, Oliver Will, Christophe Soligo, Robert D Martin

Syst Biol. 2011 Jan; 60(1): 16-31.
Published online 2010 Nov 4. doi: 10.1093/sysbio/syg054

Dating Primate Divergences through an Integrated Analysis of Palaeontological and Molecular Data

Bichard D. Wilkinson, ${ }^{1,{ }^{6}}$ Michael E. Steiper ${ }^{2,3,4,5}$ Christophe Solligo ${ }^{6}$ Robert D. Martin, ${ }^{7}$ Zheng Yang, ${ }^{8}$ and Simon Tavare 9

Genetics. 1997 Feb; 145(2): 505-518.

doi: $10.1093 /$ genetics/145.2.505
Inferring Coalescence Times from DNA Sequence Data
S. Tavare, D. J. Balding, B. C. Griffiths, and P. Donnelly.

ABC: given data $D=f(\theta)+e$, find $\pi(\theta \mid D)$

- Draw θ from $\pi(\theta)$
- Simulate $X \sim f(\theta)$
- Accept θ if $\rho(D, X) \leq \epsilon$

Works for any simulator f - no knowledge required

Project team

Mike

Mauricio
Chris

Funders:

Breathe Clean

EPSRC
Engineering and Plysical Science:
Google
Impact Challenge

Air pollution

7 million people die every year from exposure to air pollution, the majority in LMICs.

The UK government estimates the annual mortality of human-made air pollution to be 28,000 to 36,000 deaths, and costs UK $\sim £ 10^{10}$

Kampala and AirQo

AQI Key

Modelling air pollution

Model pollution concentration $u(x, t)$ at location x at time t ．
We want to
－infer air pollution（and predict future pollution levels）
－infer pollution sources
Standard non－parametric models（e．g．，Gaussian processes）unable to do this．

Modelling air pollution

Model pollution concentration $u(x, t)$ at location x at time t.
We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.
Instead build data models that know some physics

$$
\frac{\partial u}{\partial t}=\nabla \cdot\left(\mathbf{p}_{1} u\right)+\nabla \cdot\left(p_{2} \nabla u\right)-p_{3} u+f
$$

Here $f(x, t)$ represents the pollution source.

Modelling air pollution

Model pollution concentration $u(x, t)$ at location x at time t.
We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.
Instead build data models that know some physics

$$
\frac{\partial u}{\partial t}=\nabla \cdot\left(\mathbf{p}_{1} u\right)+\nabla \cdot\left(p_{2} \nabla u\right)-p_{3} u+f
$$

Here $f(x, t)$ represents the pollution source.
Given noisy measurements of pollution levels $z_{i}=h_{i}(u)+e_{i}$ can we infer

- the concentration field $u(x, t)$?
- the source $f(x, t)$?
- . . .

General linear systems

$$
\mathcal{L} u=f
$$

Linear systems with unknown parameters

Consider

$$
\mathcal{L} u=f
$$

where
－ $\mathcal{L}=$ linear operator
－$f=$ forcing function．
－u dependent quantity，e．g．pollution concentration．
Finding u given \mathcal{L} and f is the forward problem．

Linear systems with unknown parameters

Consider

$$
\mathcal{L} u=f
$$

where

- $\mathcal{L}=$ linear operator
- $f=$ forcing function.
- u dependent quantity, e.g. pollution concentration.

Finding u given \mathcal{L} and f is the forward problem.
Inverse problem: infer u, f given noisy observations of u

$$
z=h(u)+N(0, \Sigma)
$$

Note: MCMC likely to be prohibitively expensive: each iteration requires a solution of the forward problem.

Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

$$
\begin{aligned}
\min _{f} & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L} u=f
\end{aligned}
$$

Bayes: find

$$
\pi(f \mid z, \mathcal{L})
$$

Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

$$
\begin{aligned}
\min _{f} & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L} u=f
\end{aligned}
$$

Bayes: find

$$
\pi(f \mid z, \mathcal{L})
$$

Adjoints can help in both cases

- We can solve both problems with n simulator evaluations, where $n=$ number of data points.

What is an adjoint?

See Estep 2004
Suppose \mathcal{U} and \mathcal{V} are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$, and $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ a linear operator between spaces.

What is an adjoint?

See Estep 2004

Suppose \mathcal{U} and \mathcal{V} are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$, and $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on \mathcal{V}, v^{*} say, can be written as

$$
v^{*}(\cdot)=\langle\cdot, v\rangle \quad \text { for some } v \in \mathcal{V}
$$

What is an adjoint?

See Estep 2004

Suppose \mathcal{U} and \mathcal{V} are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$, and $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on \mathcal{V}, v^{*} say, can be written as

$$
v^{*}(\cdot)=\langle\cdot, v\rangle \quad \text { for some } v \in \mathcal{V}
$$

Define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto\langle\mathcal{L} u, v\rangle_{\mathcal{V}}
$$

What is an adjoint?

See Estep 2004

Suppose \mathcal{U} and \mathcal{V} are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$, and $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on \mathcal{V}, v^{*} say, can be written as

$$
v^{*}(\cdot)=\langle\cdot, v\rangle \quad \text { for some } v \in \mathcal{V}
$$

Define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto\langle\mathcal{L} u, v\rangle_{\mathcal{V}} .
$$

F is a bounded linear functional on \mathcal{U}, thus $F(\cdot)=\langle\cdot, u\rangle_{\mathcal{U}}$ for some $u \in \mathcal{U}$.

What is an adjoint?

See Estep 2004

Suppose \mathcal{U} and \mathcal{V} are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$, and $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on \mathcal{V}, v^{*} say, can be written as

$$
v^{*}(\cdot)=\langle\cdot, v\rangle \quad \text { for some } v \in \mathcal{V}
$$

Define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto\langle\mathcal{L} u, v\rangle_{\mathcal{V}} .
$$

F is a bounded linear functional on \mathcal{U}, thus $F(\cdot)=\langle\cdot, u\rangle_{\mathcal{U}}$ for some $u \in \mathcal{U}$.
Thus for all $v \in \mathcal{V}$ we've associated a unique $u \in \mathcal{U}$.

$$
\mathcal{L}^{*}: v \mapsto u
$$

\mathcal{L}^{*} is the adjoint of \mathcal{L}, and is itself a bounded linear operator.

What is an adjoint?

See Estep 2004

Suppose \mathcal{U} and \mathcal{V} are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$, and $\mathcal{L}: \mathcal{U} \mapsto \mathcal{V}$ a linear operator between spaces.
Reisz representation theorem: any bounded linear functional on \mathcal{V}, v^{*} say, can be written as

$$
v^{*}(\cdot)=\langle\cdot, v\rangle \quad \text { for some } v \in \mathcal{V}
$$

Define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto\langle\mathcal{L} u, v\rangle_{\mathcal{V}} .
$$

F is a bounded linear functional on \mathcal{U}, thus $F(\cdot)=\langle\cdot, u\rangle_{\mathcal{U}}$ for some $u \in \mathcal{U}$.
Thus for all $v \in \mathcal{V}$ we've associated a unique $u \in \mathcal{U}$.

$$
\mathcal{L}^{*}: v \mapsto u
$$

\mathcal{L}^{*} is the adjoint of \mathcal{L}, and is itself a bounded linear operator.
By definition

$$
\langle\mathcal{L} u, v\rangle=\left\langle u, \mathcal{L}^{*} v\right\rangle \text { the 'bilinear identity' }
$$

Example 0

In the finite dimensional case,

$$
\mathcal{L} u=A u \text { for some matrix } A .
$$

Example 0

In the finite dimensional case,

$$
\mathcal{L} u=A u \text { for some matrix } A .
$$

Then

$$
\mathcal{L}^{*} v=A^{\top} v
$$

That is

$$
\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle
$$

Efficient inference

$$
\mathcal{L} u=f, \quad z_{i}=h_{i}(u)+e
$$

If the observation operator is linear

$$
h_{i}(u)=\left\langle h_{i}, u\right\rangle
$$

we can consider the n adjoint systems

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { for } i=1, \ldots, n .
$$

Efficient inference

$$
\mathcal{L} u=f, \quad z_{i}=h_{i}(u)+e
$$

If the observation operator is linear

$$
h_{i}(u)=\left\langle h_{i}, u\right\rangle
$$

we can consider the n adjoint systems

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { for } i=1, \ldots, n .
$$

Then

$$
\begin{aligned}
h_{i}(u)=\left\langle h_{i}, u\right\rangle & =\left\langle\mathcal{L}^{*} v_{i}, u\right\rangle=\left\langle v_{i}, \mathcal{L} u\right\rangle \\
& =\left\langle v_{i}, f\right\rangle
\end{aligned}
$$

by the bilinear identity．

$$
\begin{aligned}
z_{i}=h_{i}(u)+e_{i} & =\left\langle v_{i}, f\right\rangle+e_{i} \\
\text { where } \quad \mathcal{L}^{*} v_{i} & =h_{i}
\end{aligned}
$$

Suppose f is a parametric model with a linear dependence upon some unknown parameters q :

$$
\begin{equation*}
f(\cdot)=\sum_{m=1}^{M} q_{m} \phi_{m}(\cdot) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
z_{i}=h_{i}(u)+e_{i} & =\left\langle v_{i}, f\right\rangle+e_{i} \\
\text { where } \quad \mathcal{L}^{*} v_{i} & =h_{i}
\end{aligned}
$$

Suppose f is a parametric model with a linear dependence upon some unknown parameters q :

$$
\begin{gather*}
f(\cdot)=\sum_{m=1}^{M} q_{m} \phi_{m}(\cdot) \tag{1}\\
\text { then } h_{i}(u)=\left\langle v_{i}, \sum_{m=1}^{M} q_{m} \phi_{m}\right\rangle=\sum_{m=1}^{M} q_{m}\left\langle v_{i}, \phi_{m}\right\rangle .
\end{gather*}
$$

A linear model!

The complete observation vector z can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e \tag{2}\\
& =\Phi q+e
\end{align*}
$$

The complete observation vector z can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e \tag{2}\\
& =\Phi q+e
\end{align*}
$$

Thus

$$
\begin{array}{rl}
\min _{f} & S(f)=(z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L} u=f
\end{array}
$$

is equivalent to

$$
\min _{q} S(q)=(z-\Phi q)^{\top}(z-\Phi q)
$$

The complete observation vector z can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e \tag{2}\\
& =\Phi q+e
\end{align*}
$$

Thus

$$
\begin{array}{rl}
\min _{f} & S(f)=(z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L} u=f
\end{array}
$$

is equivalent to

$$
\min _{q} \quad S(q)=(z-\Phi q)^{\top}(z-\Phi q)
$$

The solution is

$$
\hat{q}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} z
$$

with $\operatorname{Var}(\hat{q})=\sigma^{2}\left(\Phi^{\top} \Phi\right)^{-1}$ when e_{i} are uncorrelated and homoscedastic with variance σ^{2}.

In a Bayesian setting, if we assume a priori that $q \sim \mathcal{N}_{M}\left(\mu_{0}, \Sigma_{0}\right)$, then the posterior for q given z (and other parameters) is

$$
\begin{equation*}
q \mid z \sim \mathcal{N}_{M}\left(\mu_{n}, \Sigma_{n}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{n}=\Sigma_{n}\left(\frac{1}{\sigma^{2}} \Phi^{\top} z+\Sigma_{0}^{-1} \mu_{0}\right), \quad \Sigma_{n}=\left(\frac{1}{\sigma^{2}} \Phi^{\top} \Phi+\Sigma_{0}^{-1}\right)^{-1} \tag{4}
\end{equation*}
$$

Gaussian Processes

Suppose we model unknown function $f=\{f(x): x \in \mathcal{X}\}$ as a Gaussian process (GP)

$$
f \sim G P(m, k)
$$

where we need to specify the prior mean and covariance functions

$$
\mathbb{E} f(x)=m(x), \quad \mathbb{C o v}\left(f(x), f\left(x^{\prime}\right)\right)=k\left(x, x^{\prime}\right)
$$

Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier?

Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier?

- Let \mathcal{F} be the RKHS (function space) associated with kernel k, i.e., $f \in \mathcal{F}$
- Consider $\left\{\phi_{1}(x), \phi_{2}(x), \ldots\right\}$ an orthonormal basis for \mathcal{F}.

Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier?

- Let \mathcal{F} be the RKHS (function space) associated with kernel k, i.e., $f \in \mathcal{F}$
- Consider $\left\{\phi_{1}(x), \phi_{2}(x), \ldots\right\}$ an orthonormal basis for \mathcal{F}.

We can then approximate f using a truncated basis expansion

$$
\begin{aligned}
f(x) \approx f_{q}(x) & =\sum_{j=1}^{M} q_{i} \phi_{i}(x) \text { where a priori } q_{i} \sim N\left(0, \lambda_{i}^{2}\right) \\
& =\Phi \mathbf{q}+e
\end{aligned}
$$

We've approximated the GP by a finite dimensional linear model.

Choice of basis

$$
f(x)=\sum_{j=1}^{\infty} q_{i} \phi_{i}(x)
$$

- Random Fourier features: $\phi_{i}(x)=\cos \left(w_{i} x+b_{i}\right)$ where $w_{i}, b_{i} \sim p(\cdot)$

Choice of basis

$$
f(x)=\sum_{j=1}^{\infty} q_{i} \phi_{i}(x)
$$

- Random Fourier features: $\phi_{i}(x)=\cos \left(w_{i} x+b_{i}\right)$ where $w_{i}, b_{i} \sim p(\cdot)$
- Mercer basis: $\phi_{i}(x)=\lambda_{i} \psi(x)$ where $\lambda_{i}, \phi_{i}(\cdot)$ are eigenpairs of

$$
T_{k}(f)(\cdot)=\int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d} x
$$

- Laplacian basis: useful for non-Euclidean domains...

Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0
$$

Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\begin{gathered}
\mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0 \\
\langle\mathcal{L} u, v\rangle=\int_{0}^{T} \mathcal{L} u(t) v(t) \mathrm{d} t=\int_{0}^{T}(-D \ddot{u}+\nu \dot{u}+u) v \mathrm{~d} t \\
=[-D \dot{u} v]_{0}^{T}+\int_{0}^{T} D \dot{u} \dot{v} \mathrm{~d} t+[\nu u v]_{0}^{T}-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t
\end{gathered}
$$

Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\begin{aligned}
& \mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0 \\
&\langle\mathcal{L} u, v\rangle=\int_{0}^{T} \mathcal{L} u(t) v(t) \mathrm{d} t=\int_{0}^{T}(-D \ddot{u}+\nu \dot{u}+u) v \mathrm{~d} t \\
&=[-D \dot{u} v]_{0}^{T}+\int_{0}^{T} D \dot{u} \dot{v} \mathrm{~d} t+[\nu u v]_{0}^{T}-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t \\
&=[D u \dot{v}]_{0}^{T}-\int_{0}^{T} D u \ddot{v} \mathrm{~d} t-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t \\
&=\int_{0}^{T}(-D \ddot{v}-\nu \dot{v}+v) u \mathrm{~d} t \quad \text { when } v(T)=\dot{v}(T)=0 \\
&=\left\langle u, \mathcal{L}^{*} v\right\rangle
\end{aligned}
$$

Example 1: Posterior mean and $95 \% \mathrm{Cl}$ (blue), true (red)

- top: $n=10$ data points, $M=100$ basis vectors
- bottom: $n=100$ and $M=100$
Results required 10 and 100 ODE solves respectively.

Example 1: Too few features

$n=100$ data points

- top: $M=100$ basis vectors
- bottom: $M=10$

NB: overconfident and wrong when $M=10$ misspecified model!

Example 1: Too few features

$n=100$ data points

- top: $M=100$ basis vectors
- bottom: $M=10$

NB: overconfident and wrong when $M=10$ misspecified model!

We need to include enough features to have sufficient modelling flexibility.

Using additional features doesn't require additional ODE solves.

MCMC is fine as long as you have a small number of features.
But even with only 10 features, we need ~ 1000 s of ODE solves vs 10 ODE solves for the adjoint method.

MCMC takes longer to converge when we use more features.

Example 2：PDE

Advection－diffusion－reaction is a linear operator：

$$
\mathcal{L} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem：solve（for some initial and boundary conditions）

$$
\mathcal{L} u=f \text { on } \mathcal{X} \times[0, T]
$$

Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$
\mathcal{L} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem: solve (for some initial and boundary conditions)

$$
\mathcal{L} u=f \text { on } \mathcal{X} \times[0, T]
$$

Inverse problem: assume

$$
f(x, t) \sim G P\left(m, k_{\lambda}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)\right)
$$

and estimate q given $z_{i}=\left\langle h_{i}, u\right\rangle+N(0, \sigma)$.

Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$
\mathcal{L} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem: solve (for some initial and boundary conditions)

$$
\mathcal{L} u=f \text { on } \mathcal{X} \times[0, T]
$$

Inverse problem: assume

$$
f(x, t) \sim G P\left(m, k_{\lambda}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)\right)
$$

and estimate q given $z_{i}=\left\langle h_{i}, u\right\rangle+N(0, \sigma)$.
Typically h_{i} will be a sensor function that might average the pollution at a specific location over a short window

$$
\left\langle h_{i}, u\right\rangle=\frac{1}{|\mathcal{T}|} \int_{\mathcal{T}} u\left(x_{i}, t\right) d t
$$

Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} . \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u .
$$

Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} \cdot \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u .
$$

For n observations we need n adjoint equations!

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { in } \mathcal{X} \times[0, T] \text { for } i=1, \ldots, n .
$$

Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} . \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u
$$

For n observations we need n adjoint equations!

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { in } \mathcal{X} \times[0, T] \text { for } i=1, \ldots, n .
$$

If we use initial and boundary conditions

$$
u(x, 0)=0 \text { for } x \in \mathcal{X} \text { and } \nabla_{n} u=0 \text { for } x \in \partial \mathcal{X}
$$

then the final and boundary conditions on the adjoint system are

$$
\begin{aligned}
v_{i}(x, T) & =0 \text { for } x \in \mathcal{X} \\
\mathbf{p}_{1} v_{i}(x, t)+p_{2} \nabla v_{i}(x, t) & =0 \text { for } x \in \partial \Omega \text { and } t \in[0, T] .
\end{aligned}
$$

Results: $n=20$ (4 sensors) and $n=80(16)$, noise $=10 \%$ Posterior mean of time slice $u(x, 5)$ - more sensors, improved estimates!

Variance of $u(x, 5)$: Wind from the south west.

Results: $n=20$ (4 sensors) and $n=80(16)$, noise $=10 \%$
Posterior mean of time slice $u(x, 5)$ - more sensors, improved estimates!

Variance of $u(x, 5)$: Wind from the south west.

Conclusions

Adjoints of linear systems

- an intrusive method; development does require some work but can be automated
- Requires n adjoint solves to infer the posterior
- essentially insensitive to the number of basis functions used
- In contrast, MCMC requires a typically an a priori unknown number of simulations (but is largely independent of n).
- Gives numerically stable derivatives of the cost function with respect to other parameters, $\frac{\mathrm{d} S}{\mathrm{~d} p}$ etc.
- Opportunities for additional efficiencies...
- Efficient use of adjoint simulations
- Multi-level approaches
- Gradient based optimization
- Sequential data

Ref: Gahungu et al. NeurIPS 2022, plus forthcoming pre-prints.

Conclusions

Adjoints of linear systems

- an intrusive method; development does require some work but can be automated
- Requires n adjoint solves to infer the posterior
- essentially insensitive to the number of basis functions used
- In contrast, MCMC requires a typically an a priori unknown number of simulations (but is largely independent of n).
- Gives numerically stable derivatives of the cost function with respect to other parameters, $\frac{\mathrm{d} S}{\mathrm{~d} p}$ etc.
- Opportunities for additional efficiencies...
- Efficient use of adjoint simulations
- Multi-level approaches
- Gradient based optimization
- Sequential data

Ref: Gahungu et al. NeurIPS 2022, plus forthcoming pre-prints.
Thank you for listening!

Link to Green＇s function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green＇s function for this system，$G_{y}(x)$ ，satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

Link to Green＇s function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green＇s function for this system，$G_{y}(x)$ ，satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

Solution of the original problem is found by computing the convolution of G with f ：

$$
\begin{aligned}
u(y) & =\left\langle\delta_{y}, u\right\rangle=\left\langle\mathcal{L}^{*} G_{y}, u\right\rangle \\
& =\left\langle G_{y}, \mathcal{L} u\right\rangle=\left\langle G_{y}, f\right\rangle=\int G_{y}(x) f(x) \mathrm{d} x
\end{aligned}
$$

Link to Green's function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green's function for this system, $G_{y}(x)$, satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

Solution of the original problem is found by computing the convolution of G with f :

$$
\begin{aligned}
u(y) & =\left\langle\delta_{y}, u\right\rangle=\left\langle\mathcal{L}^{*} G_{y}, u\right\rangle \\
& =\left\langle G_{y}, \mathcal{L} u\right\rangle=\left\langle G_{y}, f\right\rangle=\int G_{y}(x) f(x) \mathrm{d} x
\end{aligned}
$$

If $f \sim G P(0, k)$, then u is also distributed as a Gaussian process,

$$
u \sim G P\left(0, k_{u}\right)
$$

with covariance function

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

If G is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

If G is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

If G is unknown, then need to approximate G before approximating the integral....

- Expensive, unstable...
- Poorly developed

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x .
$$

If G is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

If G is unknown, then need to approximate G before approximating the integral....

- Expensive, unstable...
- Poorly developed

In contrast, our approach relies on

- existence of the adjoint operator \mathcal{L}^{*}
- ability to solve adjoint systems numerically - deploy modern finite element solvers (efficient, stable, and offer good error-control).
Recommendation: Use Green's function approach only when G known and covariance integral tractable.

Effect of length scale, $\lambda=5,2,1$

Example 2: Results

Mean square error vs number of features and sensors

Median MSE as a function of number of sensors and RFFs.

Sensors		Features			
	10	50	100	200	300
1	$3.42(2.82,4.39)$	$3.27(3.13,3.38)$	$3.24(3.10,3.37)$	$3.27(3.17,3.44)$	3.24
4	$7.12(1.57,28.81)$	$2.39(2.06,2.62)$	$2.41(2.13,2.60)$	$2.45(2.32,2.57)$	2.50
9	$2.38(1.41,4.40)$	$2.12(1.48,3.98)$	$1.70(1.49,2.07)$	$1.48(1.40,1.72)$	1.47
16	$1.73(1.23,3.28)$	$3.99(2.32,10.90)$	$2.18(1.72,3.54)$	$1.3(1.02,1.68)$	1.12
25	$1.35(1.19,3.09)$	$8.93(4.92,39.86)$	$4.36(2.53,8.20)$	$1.86(1.43,2.75)$	1.35
$25(\mathrm{MH})$	$3.27(1.73,6.12)$	-	-	-	-

MH algorithm did not converge after 20,000 iterations for 50 or more RFFs.

Non-linear parameter estimation

A naive way to estimate the non-linear parameters is via Bayesian optimization iteration

Preprint showing how to use the adjoint sensitivity soon....

Example 1: Matrix system

Suppose $X=Y=\mathbb{R}^{d}$. A linear operator $\mathcal{L}_{p}: X \rightarrow Y$ can be written as

$$
\mathcal{L}_{p} x=A_{p} x \text { where } A_{p} \in \mathbb{R}^{d}
$$

where A_{p} depends on unknown parameters p.
The forward problem is solving the square linear system $A_{p} x=f$, i.e., $x_{p, q}=A_{p}^{-1} f$.

Example 1: Matrix system

Suppose $X=Y=\mathbb{R}^{d}$. A linear operator $\mathcal{L}_{p}: X \rightarrow Y$ can be written as

$$
\mathcal{L}_{p} x=A_{p} x \text { where } A_{p} \in \mathbb{R}^{d}
$$

where A_{p} depends on unknown parameters p.
The forward problem is solving the square linear system $A_{p} x=f$, i.e., $x_{p, q}=A_{p}^{-1} f$.
The adjoint operator is

$$
\mathcal{L}_{p}^{*} y=A_{p}^{\top} y
$$

as we can see that

$$
\begin{aligned}
\left\langle A_{p} x, y\right\rangle & =\left(A_{p} x\right)^{\top} y \\
& =x^{\top}\left(A^{\top} y\right) \\
& =\left\langle x, A_{p}^{\top} y\right\rangle
\end{aligned}
$$

Sensitivity

Consider the quantity of interest（Qol）

$$
h(x) \equiv\langle g, x\rangle=g^{\top} x
$$

for some $g \in \mathbb{R}^{d}$ ，where x is the solution to $h(x, p):=f-A x=0$ ．
We want to compute $\frac{\mathrm{d} g}{\mathrm{~d} p}$（as then we can compute $\frac{\mathrm{d} S}{\mathrm{~d} p}(p, q)$ ）

Sensitivity

Consider the quantity of interest (Qol)

$$
h(x) \equiv\langle g, x\rangle=g^{\top} x
$$

for some $g \in \mathbb{R}^{d}$, where x is the solution to $h(x, p):=f-A x=0$.
We want to compute $\frac{\mathrm{d} g}{\mathrm{~d} p}$ (as then we can compute $\frac{\mathrm{d} S}{\mathrm{~d} p}(p, q)$)
Define Lagrangian the

$$
L=g^{\top} x+y^{\top} h(x, p)
$$

Think of $y \in \mathbb{R}^{d}$ as Lagrange multipliers.

$$
L=g^{\top} x+y^{\top} h(x, p)
$$

Differentiating with respect to p gives

$$
\frac{d L}{d p}=g^{\top} \frac{d x}{d p}+y^{\top}\left(\frac{d h}{d x} \frac{d x}{d p}+\frac{d h}{d p}\right)
$$

This is true for all y, so if we set $g^{\top}+y^{\top} \frac{d h}{d x}=0$ then we get

$$
\begin{aligned}
\frac{d L}{d p}=\frac{d g}{d p} & =y^{\top} \frac{d h}{d p} \\
& =y^{\top}\left(\frac{d f}{d p}-\frac{d A}{d p} x\right)
\end{aligned}
$$

where $A^{\top} y=g$

$$
L=g^{\top} x+y^{\top} h(x, p)
$$

Differentiating with respect to p gives

$$
\frac{d L}{d p}=g^{\top} \frac{d x}{d p}+y^{\top}\left(\frac{d h}{d x} \frac{d x}{d p}+\frac{d h}{d p}\right)
$$

This is true for all y, so if we set $g^{\top}+y^{\top} \frac{d h}{d x}=0$ then we get

$$
\begin{aligned}
\frac{d L}{d p}=\frac{d g}{d p} & =y^{\top} \frac{d h}{d p} \\
& =y^{\top}\left(\frac{d f}{d p}-\frac{d A}{d p} x\right)
\end{aligned}
$$

where $A^{\top} y=g$
This doesn't require $\frac{\mathrm{d} x}{\mathrm{~d} p}$, but does need solutions to the forward $A x=f$ and adjoint systems $A^{\top} y=g$.

$$
L=g^{\top} x+y^{\top} h(x, p)
$$

Differentiating with respect to p gives

$$
\frac{d L}{d p}=g^{\top} \frac{d x}{d p}+y^{\top}\left(\frac{d h}{d x} \frac{d x}{d p}+\frac{d h}{d p}\right)
$$

This is true for all y, so if we set $g^{\top}+y^{\top} \frac{d h}{d x}=0$ then we get

$$
\begin{aligned}
\frac{d L}{d p}=\frac{d g}{d p} & =y^{\top} \frac{d h}{d p} \\
& =y^{\top}\left(\frac{d f}{d p}-\frac{d A}{d p} x\right)
\end{aligned}
$$

where $A^{\top} y=g$
This doesn't require $\frac{\mathrm{d} x}{\mathrm{~d} p}$, but does need solutions to the forward $A x=f$ and adjoint systems $A^{\top} y=g$.

- Autodiff software (eg TensorFlow, JAX etc) will give us this, but can be unreliable for differential equations with long iterative loops

Non-identifiable linear model

Let

$$
A_{p}=\left(\begin{array}{cc}
2+p_{2}^{2} & -1 \\
1 & 1+p_{1}^{2}
\end{array}\right) \text { and } f_{q}=\binom{q_{1}}{q_{2}}=q_{1}\binom{1}{0}+q_{2}\binom{0}{1}
$$

and suppose we're given 4 observations with

$$
G=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

Non-identifiable linear model

Let

$$
A_{p}=\left(\begin{array}{cc}
2+p_{2}^{2} & -1 \\
1 & 1+p_{1}^{2}
\end{array}\right) \text { and } f_{q}=\binom{q_{1}}{q_{2}}=q_{1}\binom{1}{0}+q_{2}\binom{0}{1}
$$

and suppose we're given 4 observations with

$$
G=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

Given any dataset we can learn q (given p) with a single adjoint solve.

Non-identifiable linear model

Let

$$
A_{p}=\left(\begin{array}{cc}
2+p_{2}^{2} & -1 \\
1 & 1+p_{1}^{2}
\end{array}\right) \text { and } f_{q}=\binom{q_{1}}{q_{2}}=q_{1}\binom{1}{0}+q_{2}\binom{0}{1}
$$

and suppose we're given 4 observations with

$$
G=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

Given any dataset we can learn q (given p) with a single adjoint solve. We can also compute the gradient of $S(p, \hat{q})$ wrt p, but in this case

$$
\frac{\mathrm{d} S}{\mathrm{~d} p}=0 \forall p
$$

and so p is unidentifiable.

Non-identifiable linear model

Let

$$
A_{p}=\left(\begin{array}{cc}
2+p_{2}^{2} & -1 \\
1 & 1+p_{1}^{2}
\end{array}\right) \text { and } f_{q}=\binom{q_{1}}{q_{2}}=q_{1}\binom{1}{0}+q_{2}\binom{0}{1}
$$

and suppose we're given 4 observations with

$$
G=\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
1 & 2 & 1 & 0
\end{array}\right)
$$

Given any dataset we can learn q (given p) with a single adjoint solve. We can also compute the gradient of $S(p, \hat{q})$ wrt p, but in this case

$$
\frac{\mathrm{d} S}{\mathrm{~d} p}=0 \forall p
$$

and so p is unidentifiable.
Consider the solution to the unconstrained optimization problem.

$$
x^{*}=\arg \min _{x}\left(z-G^{\top} x\right)^{\top}\left(z-G^{\top} x\right)
$$

The basis functions used for f form a complete basis for \mathbb{R}^{2}, and we can always find a q so that $A_{p} x^{*}=f_{q}$ (for all p as A_{p} is invertible)

