Adjoint-aided inference of Gaussian process driven differential equations

Paterne Gahungu ${ }^{1}$, Christopher Lanyon ${ }^{5}$, Mauricio Alvarez ${ }^{3}$, Engineer Bainomugisha ${ }^{4}$, Michael Smith ${ }^{2}$ Richard Wilkinson ${ }^{5}$

${ }^{1}$ Department of Computer Science, University of Burundi
${ }^{2}$ Department of Computer Science, University of Sheffield
${ }^{3}$ Department of Computer Science, University of Manchester
${ }^{4}$ Department of Computer Science, Makerere University
${ }^{5}$ School of Mathematical Sciences, University of Nottingham

March 2023

Project team

Funders:

EPSRC
Engineering and Pliysical Sciences
Google
Impact Challenge

Outline

－Motivating example：Air pollution in Kampala
－Inference for linear systems：

$$
\mathcal{L} u=f
$$

Given noisy measurements of u can we infer f ？
－Adjoints

$$
\mathcal{L}^{*} v \text { such that }\langle\mathcal{L} u, v\rangle=\left\langle u, \mathcal{L}^{*} v\right\rangle
$$

－Examples

Air pollution

7 million people die every year from exposure to air pollution, the majority in LMICs.

The UK government estimates the annual mortality of human-made air pollution to be 28,000 to 36,000 deaths, and costs UK $\sim £ 10^{10}$

Kampala and AirQo

- AirQo, a portable air quality monitor
- Measures particulate matter
- Solar powered or other available power sources
- Cellular data transmission
- Weather proof for unique African settings

Accurate gravimetric sensors costs $\$ 10,000$ s.
AirQo have developed cheap (but less accurate) sensors that cost $<\$ 100$ and have deployed them around Kampala.
The sensors measure PM2.5 and PM10.

Kampala: PM2.5 levels 12pm yesterday

AQI Key

London (17th of 27 European capitals): $8 \mu \mathrm{~g} / \mathrm{m}^{3}$ 20 year average for UK: $11 \mu \mathrm{~g} / \mathrm{m}^{3}$
WHO guideline: $5 \mu \mathrm{~g} / \mathrm{m}^{3}$

Google.org @Googleorg•12h

Google.org
Air pollution is the largest single environmental health risk. @AirQoProject is building \& deploying low-cost air sensing devices across African cities to drive awareness and action to improve air quality and help decision makers: goo.gle/3fozTDn

Spotlight on AirQo

Using Al to reduce air pollution across
African cities

Google.org GOALS

โ7 AirQo Retweeted

Kampala Capital City Authority (KCCA) @KCCAUG • 1h
THANK YOU!
To all partners/everyone that supported and showed up for the Kampala Car Free Day.

We believe this was one of the steps to promoting co-existence of all road users, raise road safety awareness \& reduce air pollution in the City. \#ForABetterCity

5
〔ป 9
023
lill 1,505
さ

Air pollution digital twin

Model pollution concentration $u(x, t)$ at location x at time t ． We want to
－infer air pollution（and predict future pollution levels）
－infer pollution sources
Standard non－parametric models（e．g．，Gaussian processes）unable to do this．

Air pollution digital twin

Model pollution concentration $u(x, t)$ at location x at time t. We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.
Instead build data models that know some physics

$$
\frac{\partial u}{\partial t}=\nabla \cdot\left(\mathbf{p}_{1} u\right)+\nabla \cdot\left(p_{2} \nabla u\right)-p_{3} u+\sum_{i} f_{i}
$$

- $f_{i}(x, t)$ are different pollution sources,
- we may choose to model different pollution types (PM2.5, PM10 etc)

Air pollution digital twin

Model pollution concentration $u(x, t)$ at location x at time t. We want to

- infer air pollution (and predict future pollution levels)
- infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do this.
Instead build data models that know some physics

$$
\frac{\partial u}{\partial t}=\nabla \cdot\left(\mathbf{p}_{1} u\right)+\nabla \cdot\left(p_{2} \nabla u\right)-p_{3} u+\sum_{i} f_{i}
$$

- $f_{i}(x, t)$ are different pollution sources,
- we may choose to model different pollution types (PM2.5, PM10 etc) Hypothesis: The inclusion of mechanistic behaviour will allow us to infer sources, plan interventions, and predict better.

Computational challenge

Given noisy measurements of pollution levels $z_{i}=h_{i}(u)+e_{i}$.
Can we infer

- the concentration field $u(x, t)$?
- the unknown source terms $f_{i}(x, t)$?
- the diffusion, advection and reaction parameters? Hyperparameters etc?

Computational challenge

Given noisy measurements of pollution levels $z_{i}=h_{i}(u)+e_{i}$.
Can we infer

- the concentration field $u(x, t)$?
- the unknown source terms $f_{i}(x, t)$?
- the diffusion, advection and reaction parameters? Hyperparameters etc?
Use Gaussian process priors for $f_{i}(x, t)$

$$
f_{i} \sim G P\left(m_{i}(\cdot), k_{i}(\cdot, \cdot)\right)
$$

where we carefully choose each prior mean and covariance function:

- Industrial regions
- Major roads and power stations
- Varying affluence levels between regions (related to paving of roads, burning of garbage, cooking on solid fuel stoves etc).

General linear systems

$$
\mathcal{L} u=f
$$

Linear systems with unknown parameters

Consider

$$
\mathcal{L}_{p} u=f
$$

where

- $\mathcal{L}_{p}=$ linear operator with non-linear dependence upon parameters p.
- $f=$ forcing function.
- u is the quantity being modelled, e.g. pollution concentration.

Finding u given p and f is the forward problem.

Linear systems with unknown parameters

Consider

$$
\mathcal{L}_{p} u=f
$$

where

- $\mathcal{L}_{p}=$ linear operator with non-linear dependence upon parameters p.
- $f=$ forcing function.
- u is the quantity being modelled, e.g. pollution concentration.

Finding u given p and f is the forward problem.
Inverse problem: infer u, f, p given noisy observations of u

$$
z=h(u)+N(0, \Sigma)
$$

Note: MCMC likely to be prohibitively expensive: each iteration requires a solution of the forward problem.

Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

$$
\begin{aligned}
\min _{p, f} & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

Bayes: find

$$
\pi(p, f, u \mid z)
$$

What is an adjoint?

See Estep 2004
Let $\mathcal{L}: \mathcal{U} \rightarrow \mathcal{V}$ be a linear operator between Banach spaces, and let \mathcal{U}^{*} be the dual space of \mathcal{U} : the space of bounded linear functionals on \mathcal{U}.

What is an adjoint?

See Estep 2004
Let $\mathcal{L}: \mathcal{U} \rightarrow \mathcal{V}$ be a linear operator between Banach spaces, and let \mathcal{U}^{*} be the dual space of \mathcal{U} : the space of bounded linear functionals on \mathcal{U}.

Consider $v^{*} \in \mathcal{V}^{*}$ and define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto v^{*}(\mathcal{L}(u)) .
$$

What is an adjoint?

See Estep 2004
Let $\mathcal{L}: \mathcal{U} \rightarrow \mathcal{V}$ be a linear operator between Banach spaces, and let \mathcal{U}^{*} be the dual space of \mathcal{U} : the space of bounded linear functionals on \mathcal{U}.

Consider $v^{*} \in \mathcal{V}^{*}$ and define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto v^{*}(\mathcal{L}(u)) .
$$

Then F is a bounded linear functional on \mathcal{U}, i.e. $F=u^{*}$ for some $u^{*} \in \mathcal{U}^{*}$.

Thus for all $v^{*} \in \mathcal{V}^{*}$ we've associated a unique $u^{*} \in \mathcal{U}^{*}$.

What is an adjoint?

See Estep 2004

Let $\mathcal{L}: \mathcal{U} \rightarrow \mathcal{V}$ be a linear operator between Banach spaces, and let \mathcal{U}^{*} be the dual space of \mathcal{U} : the space of bounded linear functionals on \mathcal{U}.

Consider $v^{*} \in \mathcal{V}^{*}$ and define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto v^{*}(\mathcal{L}(u)) .
$$

Then F is a bounded linear functional on \mathcal{U}, i.e. $F=u^{*}$ for some $u^{*} \in \mathcal{U}^{*}$.

Thus for all $v^{*} \in \mathcal{V}^{*}$ we've associated a unique $u^{*} \in \mathcal{U}^{*}$.

$$
\mathcal{L}^{*}: v^{*} \mapsto u^{*} .
$$

\mathcal{L}^{*} is the adjoint of \mathcal{L}, and is itself a bounded linear operator.

What is an adjoint?

See Estep 2004

Let $\mathcal{L}: \mathcal{U} \rightarrow \mathcal{V}$ be a linear operator between Banach spaces, and let \mathcal{U}^{*} be the dual space of \mathcal{U} : the space of bounded linear functionals on \mathcal{U}.

Consider $v^{*} \in \mathcal{V}^{*}$ and define $F: \mathcal{U} \rightarrow \mathbb{R}$ by

$$
F: u \mapsto v^{*}(\mathcal{L}(u)) .
$$

Then F is a bounded linear functional on \mathcal{U}, i.e. $F=u^{*}$ for some $u^{*} \in \mathcal{U}^{*}$.

Thus for all $v^{*} \in \mathcal{V}^{*}$ we've associated a unique $u^{*} \in \mathcal{U}^{*}$.

$$
\mathcal{L}^{*}: v^{*} \mapsto u^{*} .
$$

\mathcal{L}^{*} is the adjoint of \mathcal{L}, and is itself a bounded linear operator.
By definition

$$
v^{*}(\mathcal{L}(u))=\mathcal{L}^{*} v^{*}(u)
$$

which is known as the bilinear identity.

Adjoints in Hilbert space

See Estep 2004

When \mathcal{U} and \mathcal{V} are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$,
we can identify them with their dual space:
- Riesz representation theorem: for all $v^{*} \in \mathcal{V}^{*}$ there exists $v \in \mathcal{V}$ such that $v^{*}=\langle\cdot, v\rangle_{\mathcal{V}}$

Adjoints in Hilbert space

See Estep 2004

When \mathcal{U} and \mathcal{V} are Hilbert spaces

- i.e. vector spaces with an inner product $\left\langle u, u^{\prime}\right\rangle$,
we can identify them with their dual space:
- Riesz representation theorem: for all $v^{*} \in \mathcal{V}^{*}$ there exists $v \in \mathcal{V}$ such that $v^{*}=\langle\cdot, v\rangle \mathcal{\nu}$

The bilinear identity reduces to

$$
\begin{aligned}
\langle\mathcal{L} u, v\rangle & =v^{*}(\mathcal{L}(u))=\mathcal{L}^{*} v^{*}(u) \\
& =\left\langle u, \mathcal{L}^{*} v\right\rangle
\end{aligned}
$$

where we now consider $\mathcal{L}^{*}: \mathcal{V} \rightarrow \mathcal{U}$.

Example 0

In the finite dimensional case, $\mathcal{U}=\mathbb{R}^{n}, \mathcal{V}=\mathbb{R}^{m}$, then $\left\langle u_{1}, u_{2}\right\rangle=u_{1}^{\top} u_{2}$ etc and
$\mathcal{L} u=A u$ for some $m \times n$ matrix A.

Example 0

In the finite dimensional case, $\mathcal{U}=\mathbb{R}^{n}, \mathcal{V}=\mathbb{R}^{m}$, then $\left\langle u_{1}, u_{2}\right\rangle=u_{1}^{\top} u_{2}$ etc and

$$
\mathcal{L} u=A u \text { for some } \mathrm{m} \times \mathrm{n} \text { matrix } A .
$$

Then

$$
\mathcal{L}^{*} v=A^{\top} v
$$

That is

$$
\langle A u, v\rangle=\left\langle u, A^{\top} v\right\rangle
$$

Efficient inference

$$
\mathcal{L} u=f, \quad z_{i}=h_{i}(u)+e
$$

If the observation operator is linear

$$
h_{i}(u)=\left\langle h_{i}, u\right\rangle
$$

we can consider the n adjoint systems

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { for } i=1, \ldots, n .
$$

Efficient inference

$$
\mathcal{L} u=f, \quad z_{i}=h_{i}(u)+e
$$

If the observation operator is linear

$$
h_{i}(u)=\left\langle h_{i}, u\right\rangle
$$

we can consider the n adjoint systems

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { for } i=1, \ldots, n .
$$

Then

$$
\begin{aligned}
h_{i}(u)=\left\langle h_{i}, u\right\rangle & =\left\langle\mathcal{L}^{*} v_{i}, u\right\rangle=\left\langle v_{i}, \mathcal{L} u\right\rangle \\
& =\left\langle v_{i}, f\right\rangle
\end{aligned}
$$

by the bilinear identity．

$$
\begin{aligned}
z_{i}=h_{i}(u)+e_{i} & =\left\langle v_{i}, f\right\rangle+e_{i} \\
\text { where } \quad \mathcal{L}^{*} v_{i} & =h_{i}
\end{aligned}
$$

Suppose f is a parametric model with a linear dependence upon some unknown parameters q :

$$
\begin{equation*}
f(\cdot)=\sum_{m=1}^{M} q_{m} \phi_{m}(\cdot) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
z_{i}=h_{i}(u)+e_{i} & =\left\langle v_{i}, f\right\rangle+e_{i} \\
\text { where } \quad \mathcal{L}^{*} v_{i} & =h_{i}
\end{aligned}
$$

Suppose f is a parametric model with a linear dependence upon some unknown parameters q :

$$
\begin{gather*}
f(\cdot)=\sum_{m=1}^{M} q_{m} \phi_{m}(\cdot) \tag{1}\\
\text { then } h_{i}(u)=\left\langle v_{i}, \sum_{m=1}^{M} q_{m} \phi_{m}\right\rangle=\sum_{m=1}^{M} q_{m}\left\langle v_{i}, \phi_{m}\right\rangle .
\end{gather*}
$$

A linear model!

The complete observation vector z can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e \tag{2}\\
& =\Phi q+e
\end{align*}
$$

The complete observation vector z can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e \tag{2}\\
& =\Phi q+e
\end{align*}
$$

Thus

$$
\begin{array}{rl}
\min _{f} & S(f)=(z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L} u=f
\end{array}
$$

is equivalent to

$$
\min _{q} S(q)=(z-\Phi q)^{\top}(z-\Phi q)
$$

The complete observation vector z can then be written as

$$
\begin{align*}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e \tag{2}\\
& =\Phi q+e
\end{align*}
$$

Thus

$$
\begin{array}{rl}
\min _{f} & S(f)=(z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L} u=f
\end{array}
$$

is equivalent to

$$
\min _{q} \quad S(q)=(z-\Phi q)^{\top}(z-\Phi q)
$$

The solution is

$$
\hat{q}=\left(\Phi^{\top} \Phi\right)^{-1} \Phi^{\top} z
$$

with $\operatorname{Var}(\hat{q})=\sigma^{2}\left(\Phi^{\top} \Phi\right)^{-1}$ when e_{i} are uncorrelated and homoscedastic with variance σ^{2}.

In a Bayesian setting, if we assume a priori that $q \sim \mathcal{N}_{M}\left(\mu_{0}, \Sigma_{0}\right)$, then the posterior for q given z (and other parameters) is

$$
\begin{equation*}
q \mid z \sim \mathcal{N}_{M}\left(\mu_{n}, \Sigma_{n}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{n}=\Sigma_{n}\left(\frac{1}{\sigma^{2}} \Phi^{\top} z+\Sigma_{0}^{-1} \mu_{0}\right), \quad \Sigma_{n}=\left(\frac{1}{\sigma^{2}} \Phi^{\top} \Phi+\Sigma_{0}^{-1}\right)^{-1} \tag{4}
\end{equation*}
$$

Benefits of adjoints

$$
\begin{aligned}
\min _{p, f} S(p, f)= & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

(1) If $f \equiv f_{q}$ depends linearly on some parameters q we can easily compute the least squares estimator

$$
\hat{q}(p)=\arg \min _{q} S\left(p, f_{q}\right)
$$

Benefits of adjoints

$$
\begin{aligned}
\min _{p, f} S(p, f)= & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

(1) If $f \equiv f_{q}$ depends linearly on some parameters q we can easily compute the least squares estimator

$$
\hat{q}(p)=\arg \min _{q} S\left(p, f_{q}\right)
$$

- If $z=h(u)+N(0, \Sigma)$, and $q \sim N(m, C)$ a priori, then

$$
q \mid z, p=N\left(m^{*}, C^{*}\right)
$$

Benefits of adjoints

$$
\begin{aligned}
\min _{p, f} S(p, f)= & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

(1) If $f \equiv f_{q}$ depends linearly on some parameters q we can easily compute the least squares estimator

$$
\hat{q}(p)=\arg \min _{q} S\left(p, f_{q}\right)
$$

- If $z=h(u)+N(0, \Sigma)$, and $q \sim N(m, C)$ a priori, then

$$
q \mid z, p=N\left(m^{*}, C^{*}\right)
$$

(2) We can compute $\frac{\mathrm{d} S}{\mathrm{~d} p}\left(p, f_{q}\right)$ (can we approximate $\frac{\mathrm{d} S}{\mathrm{~d} p}\left(p, f_{\hat{q}(p)}\right)$?)

Benefits of adjoints

$$
\begin{aligned}
\min _{p, f} S(p, f)= & (z-h(u))^{\top}(z-h(u)) \\
\text { subject to } & \mathcal{L}_{p} u=f .
\end{aligned}
$$

(1) If $f \equiv f_{q}$ depends linearly on some parameters q we can easily compute the least squares estimator

$$
\hat{q}(p)=\arg \min _{q} S\left(p, f_{q}\right)
$$

- If $z=h(u)+N(0, \Sigma)$, and $q \sim N(m, C)$ a priori, then

$$
q \mid z, p=N\left(m^{*}, C^{*}\right)
$$

(2) We can compute $\frac{\mathrm{d} S}{\mathrm{~d} p}\left(p, f_{q}\right)$ (can we approximate $\frac{\mathrm{d} S}{\mathrm{~d} p}\left(p, f_{\hat{q}(p)}\right)$?)

This may allow for efficient inference of p and f

Quick intro to Gaussian Processes

Suppose we model unknown function $f=\{f(x): x \in \mathcal{X}\}$ as a Gaussian process (GP)

- i.e. joint distribution of $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is Gaussian.

Quick intro to Gaussian Processes

Suppose we model unknown function $f=\{f(x): x \in \mathcal{X}\}$ as a Gaussian process (GP)

- i.e. joint distribution of $f\left(x_{1}\right), \ldots, f\left(x_{n}\right)$ is Gaussian.

All we need to do is specify the prior mean and covariance functions

$$
\mathbb{E} f(x)=m(x), \quad \operatorname{Cov}\left(f(x), f\left(x^{\prime}\right)\right)=k\left(x, x^{\prime}\right)
$$

Write $\quad f \sim G P(m, k)$.

Why use GPs?

- Mathematically attractive family
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

Why use GPs？

－Mathematically attractive family
－Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

－Closed under Bayesian conditioning：if we observe $\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions．

Why use GPs?

- Mathematically attractive family
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

- Closed under Bayesian conditioning: if we observe $\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

- Closed under any linear operator. If $f \sim G P(m(\cdot), k(\cdot, \cdot))$, then \mathcal{L} is a linear operator

$$
\mathcal{L} \circ f \sim G P\left(\mathcal{L} \circ m, \mathcal{L}^{2} \circ k\right)
$$

e.g. $\frac{d f}{d x}, \int f(x) d x, A f$ are all GPs

Why use GPs?

- Mathematically attractive family
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

- Closed under Bayesian conditioning: if we observe $\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

- Closed under any linear operator. If $f \sim G P(m(\cdot), k(\cdot, \cdot))$, then \mathcal{L} is a linear operator

$$
\mathcal{L} \circ f \sim G P\left(\mathcal{L} \circ m, \mathcal{L}^{2} \circ k\right)
$$

e.g. $\frac{d f}{d x}, \int f(x) d x, A f$ are all GPs

- Natural - Best linear unbiased predictors etc

Why use GPs?

- Mathematically attractive family
- Closed under addition

$$
f_{1}, f_{2} \sim G P \text { then } f_{1}+f_{2} \sim G P
$$

- Closed under Bayesian conditioning: if we observe $\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$ then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

- Closed under any linear operator. If $f \sim G P(m(\cdot), k(\cdot, \cdot))$, then \mathcal{L} is a linear operator

$$
\mathcal{L} \circ f \sim G P\left(\mathcal{L} \circ m, \mathcal{L}^{2} \circ k\right)
$$

e.g. $\frac{d f}{d x}, \int f(x) d x, A f$ are all GPs

- Natural - Best linear unbiased predictors etc
- Relate to other methods such as kernel regression

Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier?

Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier?

- Let \mathcal{F} be the RKHS (function space) associated with kernel k, i.e., $f \in \mathcal{F}$
- Consider $\left\{\phi_{1}(x), \phi_{2}(x), \ldots\right\}$ an orthonormal basis for \mathcal{F}.

Parameterizing GPs

$$
f(x) \sim G P\left(m(x), k\left(x, x^{\prime}\right)\right) .
$$

How can we use GPs within the adjoint framework developed earlier?

- Let \mathcal{F} be the RKHS (function space) associated with kernel k, i.e., $f \in \mathcal{F}$
- Consider $\left\{\phi_{1}(x), \phi_{2}(x), \ldots\right\}$ an orthonormal basis for \mathcal{F}.

We can then approximate f using a truncated basis expansion

$$
\begin{aligned}
f(x) \approx f_{q}(x) & =\sum_{j=1}^{M} q_{i} \phi_{i}(x) \text { where a priori } q_{i} \sim N\left(0, \lambda_{i}^{2}\right) \\
& =\Phi \mathbf{q}+e
\end{aligned}
$$

We've approximated the GP by a linear model.

Choice of basis in $f_{q}(\cdot)=\sum^{M} q_{i} \lambda_{i} \phi_{i}(\cdot)$

- Mercer basis: $\phi_{i}(x)=\lambda_{i} \psi(x)$ where $\lambda_{i}, \phi_{i}(\cdot)$ are eigenpairs of

$$
T_{k}(f)(\cdot)=\int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d} x
$$

Karhunen-Loève theorem says this choice is mean square optimal

Choice of basis in $f_{q}(\cdot)=\sum^{M} q_{i} \lambda_{i} \phi_{i}(\cdot)$

- Mercer basis: $\phi_{i}(x)=\lambda_{i} \psi(x)$ where $\lambda_{i}, \phi_{i}(\cdot)$ are eigenpairs of

$$
T_{k}(f)(\cdot)=\int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d} x
$$

Karhunen-Loève theorem says this choice is mean square optimal

- Random Fourier features: If k stationary, Bochner's theorem:

$$
k\left(x-x^{\prime}\right)=\int \exp \left(i w^{\top}\left(x-x^{\prime}\right)\right) p(w) d w=\mathbb{E}_{w \sim p} \exp \left(i w^{\top}\left(x-x^{\prime}\right)\right)
$$

Thus we can use $\phi_{i}(x)=\cos \left(w_{i}^{\top} x+b_{i}\right)$ where $w_{i} \sim p(\cdot)$ and $b_{i} \sim U[0,2 \pi]$

Choice of basis in $f_{q}(\cdot)=\sum^{M} q_{i} \lambda_{i} \phi_{i}(\cdot)$

- Mercer basis: $\phi_{i}(x)=\lambda_{i} \psi(x)$ where $\lambda_{i}, \phi_{i}(\cdot)$ are eigenpairs of

$$
T_{k}(f)(\cdot)=\int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d} x
$$

Karhunen-Loève theorem says this choice is mean square optimal

- Random Fourier features: If k stationary, Bochner's theorem:

$$
k\left(x-x^{\prime}\right)=\int \exp \left(i w^{\top}\left(x-x^{\prime}\right)\right) p(w) d w=\mathbb{E}_{w \sim p} \exp \left(i w^{\top}\left(x-x^{\prime}\right)\right)
$$

Thus we can use $\phi_{i}(x)=\cos \left(w_{i}^{\top} x+b_{i}\right)$ where $w_{i} \sim p(\cdot)$ and $b_{i} \sim U[0,2 \pi]$

- Laplacian basis: useful for non-Euclidean domains...

Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0
$$

Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\begin{gathered}
\mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0 \\
\langle\mathcal{L} u, v\rangle=\int_{0}^{T} \mathcal{L} u(t) v(t) \mathrm{d} t=\int_{0}^{T}(-D \ddot{u}+\nu \dot{u}+u) v \mathrm{~d} t \\
=[-D \dot{u} v]_{0}^{T}+\int_{0}^{T} D \dot{u} \dot{v} \mathrm{~d} t+[\nu u v]_{0}^{T}-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t
\end{gathered}
$$

Example 1: Ordinary differential equation

Consider the ordinary differential equation

$$
-D \ddot{u}+\nu \dot{u}+u=f(t) \quad \text { with } u(0)=\dot{u}(0)=0 .
$$

Use the bilinear identity to find the adjoint of

$$
\begin{aligned}
& \mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0 \\
&\langle\mathcal{L} u, v\rangle=\int_{0}^{T} \mathcal{L} u(t) v(t) \mathrm{d} t=\int_{0}^{T}(-D \ddot{u}+\nu \dot{u}+u) v \mathrm{~d} t \\
&=[-D \dot{u} v]_{0}^{T}+\int_{0}^{T} D \dot{u} \dot{v} \mathrm{~d} t+[\nu u v]_{0}^{T}-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t \\
&=[D u \dot{v}]_{0}^{T}-\int_{0}^{T} D u \ddot{v} \mathrm{~d} t-\int_{0}^{T} \nu u \dot{v} d t+\int_{0}^{T} u v \mathrm{~d} t \\
&=\int_{0}^{T}(-D \ddot{v}-\nu \dot{v}+v) u \mathrm{~d} t \quad \text { when } v(T)=\dot{v}(T)=0 \\
&=\left\langle u, \mathcal{L}^{*} v\right\rangle
\end{aligned}
$$

So the linear operator

$$
\mathcal{L} u=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) u \quad \text { with } u(0)=\dot{u}(0)=0
$$

has adjoint operator

$$
\mathcal{L}^{*} v=\left(-D \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}-\nu \frac{\mathrm{d}}{\mathrm{~d} t}+1\right) v \quad \text { with } v(T)=\dot{v}(T)=0
$$

The initial conditions for the original system translate to final conditions for the adjoint system.

Example 1: Posterior mean and $95 \% \mathrm{Cl}$ (blue), true (red)

- top: $n=10$ data points, $M=100$ basis vectors
- bottom: $n=100$ and $M=100$
Results required 10 and 100 ODE solves respectively.

Example 1: Too few features

$n=100$ data points

- top: $M=100$ basis vectors
- bottom: $M=10$

NB: overconfident and wrong when $M=10$ misspecified model!

Example 1: Too few features

$n=100$ data points

- top: $M=100$ basis vectors
- bottom: $M=10$

NB: overconfident and wrong when $M=10$ misspecified model!

We need to include enough features to have sufficient modelling flexibility.

Using additional features doesn't require additional ODE solves.

MCMC is fine as long as you have a small number of features.
But even with only 10 features, we need ~ 1000 s of ODE solves vs 10 ODE solves for the adjoint method.

MCMC takes longer to converge when we use more features.

Example 2：PDE

Advection－diffusion－reaction is a linear operator：

$$
\mathcal{L} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem：solve（for some initial and boundary conditions）

$$
\mathcal{L} u=f \text { on } \mathcal{X} \times[0, T]
$$

Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$
\mathcal{L} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem: solve (for some initial and boundary conditions)

$$
\mathcal{L} u=f \text { on } \mathcal{X} \times[0, T]
$$

Inverse problem: assume

$$
f(x, t) \sim G P\left(m, k_{\lambda}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)\right)
$$

and estimate f given $z_{i}=\left\langle h_{i}, u\right\rangle+N(0, \sigma)$.

Example 2: PDE

Advection-diffusion-reaction is a linear operator:

$$
\mathcal{L} u=\frac{\partial u}{\partial t}-\nabla \cdot\left(\mathbf{p}_{1} u\right)-\nabla \cdot\left(p_{2} \nabla u\right)+p_{3} u
$$

Forward problem: solve (for some initial and boundary conditions)

$$
\mathcal{L} u=f \text { on } \mathcal{X} \times[0, T]
$$

Inverse problem: assume

$$
f(x, t) \sim G P\left(m, k_{\lambda}\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)\right)
$$

and estimate f given $z_{i}=\left\langle h_{i}, u\right\rangle+N(0, \sigma)$.
h_{i} are sensor functions that average the pollution at a specific location over a short window

$$
\left\langle h_{i}, u\right\rangle=\frac{1}{\left|\mathcal{T}_{i}\right|} \int_{\mathcal{T}_{i}} u\left(x_{i}, t\right) d t
$$

Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} \cdot \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u .
$$

Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} . \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u .
$$

For n observations we need n adjoint equations!

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { in } \mathcal{X} \times[0, T] \text { for } i=1, \ldots, n .
$$

Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} . \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u
$$

For n observations we need n adjoint equations!

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { in } \mathcal{X} \times[0, T] \text { for } i=1, \ldots, n .
$$

If we use initial and boundary conditions

$$
u(x, 0)=0 \text { for } x \in \mathcal{X} \text { and } \nabla_{n} u=0 \text { for } x \in \partial \mathcal{X}
$$

then the final and boundary conditions on the adjoint system are

$$
\begin{aligned}
v_{i}(x, T) & =0 \text { for } x \in \mathcal{X} \\
\mathbf{p}_{1} v_{i}(x, t)+p_{2} \nabla v_{i}(x, t) & =0 \text { for } x \in \partial \Omega \text { and } t \in[0, T] .
\end{aligned}
$$

Example 2: PDE adjoint

The adjoint system is again derived by integrating by parts twice:

$$
\mathcal{L}^{*} v=-\frac{\partial v}{\partial t}-\mathbf{p}_{1} . \nabla v-\nabla \cdot\left(p_{2} \nabla v\right)+p_{3} u
$$

For n observations we need n adjoint equations!

$$
\mathcal{L}^{*} v_{i}=h_{i} \text { in } \mathcal{X} \times[0, T] \text { for } i=1, \ldots, n .
$$

If we use initial and boundary conditions

$$
u(x, 0)=0 \text { for } x \in \mathcal{X} \text { and } \nabla_{n} u=0 \text { for } x \in \partial \mathcal{X}
$$

then the final and boundary conditions on the adjoint system are

$$
\begin{aligned}
v_{i}(x, T) & =0 \text { for } x \in \mathcal{X} \\
\mathbf{p}_{1} v_{i}(x, t)+p_{2} \nabla v_{i}(x, t) & =0 \text { for } x \in \partial \Omega \text { and } t \in[0, T] .
\end{aligned}
$$

- May find numerical issues: depends on the discretization, the sensor functions h_{i}, diffusion rate etc
- The cost of solving the adjoint is the same as solving the forward problem.

Results：$n=20$（4 sensors）and $n=80(16)$ ，noise $=10 \%$ Posterior mean of time slice $u(x, 5)$－more sensors，improved estimates！

Variance of $u(x, 5)$ ：Wind from the south west．

Results: $n=20$ (4 sensors) and $n=80(16)$, noise $=10 \%$ Posterior mean of time slice $u(x, 5)$ - more sensors, improved estimates!

Variance of $u(x, 5)$: Wind from the south west.

Effect of length scale，$\lambda=5,2,1$

MSE 0.008 and 0.004

MSE 0.68 and 0.07

MSE 1.85 and 2.55

Example 2: Results

Mean square error vs number of features and sensors

Median MSE as a function of number of sensors and basis vectors.
Sensors
\# basis vectors

	10	50	100	200	300
1	$3.42(2.82,4.39)$	$3.27(3.13,3.38)$	$3.24(3.10,3.37)$	$3.27(3.17,3.44)$	3.24
4	$7.12(1.57,28.81)$	$2.39(2.06,2.62)$	$2.41(2.13,2.60)$	$2.45(2.32,2.57)$	2.50
9	$2.38(1.41,4.40)$	$2.12(1.48,3.98)$	$1.70(1.49,2.07)$	$1.48(1.40,1.72)$	1.47
16	$1.73(1.23,3.28)$	$3.99(2.32,10.90)$	$2.18(1.72,3.54)$	$1.3(1.02,1.68)$	1.12
25	$1.35(1.19,3.09)$	$8.93(4.92,39.86)$	$4.36(2.53,8.20)$	$1.86(1.43,2.75)$	1.35
$25(\mathrm{MH})$	$3.27(1.73,6.12)$	-	-	-	-

MH algorithm did not converge after 20,000 iterations for 50 or more RFFs.

Non-linear parameter estimation

A naive way to estimate the non-linear parameters is via Bayesian optimization

- use the adjoint sensitivity to estimate derivative information
- estimate posterior using a variational approach

Sequential data

$$
\begin{aligned}
z & =\left(\begin{array}{ccc}
\left\langle v_{1}, \phi_{1}\right\rangle & \ldots & \left\langle v_{1}, \phi_{M}\right\rangle \\
\vdots & & \vdots \\
\left\langle v_{n}, \phi_{1}\right\rangle & \ldots & \left\langle v_{n}, \phi_{M}\right\rangle
\end{array}\right)\left(\begin{array}{c}
q_{1} \\
\\
q_{M}
\end{array}\right)+e \\
& =\Phi \mathbf{q}+e
\end{aligned}
$$

Adding features, or incorporating new data is easy

- New features/basis vectors require new columns in Φ - no new simulation is required
- New data adds rows to Φ - each new data point necessitates one additional simulation.

Costs

Adjoint method:

- For the linear forcing/source parameter, we require n solves of the adjoint system to infer the posterior.
- The method is essentially insensitive to the number of basis functions used.
- The non-linear parameters (GP hyperparameters, PDE parameters) can be inferred in an outer-loop - each step requires a further n adjoint solves (and another n forward solves if we want gradient information).
MCMC:
- All parameters inferred together.
- Hard to say how many iterations will be required, but likely to grow with the the number of parameters (and hence number of GP features).
- Number of iterations required largely independent of n.
- Derivative information generally helps, but this is likely to be unavailable (autodiff often unstable for PDE solvers)

Link to Green＇s function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green＇s function for this system，$G_{y}(x)$ ，satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

Link to Green's function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green's function for this system, $G_{y}(x)$, satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

Solution of the original problem is found by computing the convolution of G with f :

$$
\begin{aligned}
u(y) & =\left\langle\delta_{y}, u\right\rangle=\left\langle\mathcal{L}^{*} G_{y}, u\right\rangle \\
& =\left\langle G_{y}, \mathcal{L} u\right\rangle=\left\langle G_{y}, f\right\rangle=\int G_{y}(x) f(x) \mathrm{d} x
\end{aligned}
$$

Link to Green's function approach

Consider the linear system

$$
\mathcal{L} u=f \quad \text { for } x \in \Omega
$$

The Green's function for this system, $G_{y}(x)$, satisfies

$$
\mathcal{L}^{*} G_{y}(x)=\delta_{y}(x) \quad \text { for } x \in \Omega
$$

Solution of the original problem is found by computing the convolution of G with f :

$$
\begin{aligned}
u(y) & =\left\langle\delta_{y}, u\right\rangle=\left\langle\mathcal{L}^{*} G_{y}, u\right\rangle \\
& =\left\langle G_{y}, \mathcal{L} u\right\rangle=\left\langle G_{y}, f\right\rangle=\int G_{y}(x) f(x) \mathrm{d} x
\end{aligned}
$$

If $f \sim G P(0, k)$, then u is also distributed as a Gaussian process,

$$
u \sim G P\left(0, k_{u}\right)
$$

with covariance function

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

If G is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x
$$

If G is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

If G is unknown, then need to approximate G before approximating the integral....

- Expensive, unstable...
- Poorly developed

$$
k_{u}\left(y, y^{\prime}\right)=\int G_{y}(x) \int G_{y^{\prime}}\left(x^{\prime}\right) k\left(x, x^{\prime}\right) \mathrm{d} x^{\prime} \mathrm{d} x .
$$

If G is known then sometimes it is possible to compute this analytically. Otherwise numerical methods must be used.

- Likely to be cheaper than the adjoint approach

If G is unknown, then need to approximate G before approximating the integral....

- Expensive, unstable...
- Poorly developed

In contrast, adjoint approach relies on

- knolwedge of the adjoint operator \mathcal{L}^{*}
- ability to solve adjoint systems numerically - deploy modern finite element solvers (efficient, stable, and offer good error-control).
Recommendation: Use Green's function approach when G is known and covariance integral tractable.

Conclusions

Adjoints of linear systems

- an intrusive method; development does require some work but can be automated
- Requires n adjoint solves to infer the posterior
- essentially insensitive to the number of basis functions used
- In contrast, MCMC requires a typically an a priori unknown number of simulations (but is largely independent of n).
- Gives numerically stable derivatives of the cost function with respect to other parameters, $\frac{\mathrm{d} S}{\mathrm{~d} p}$ etc.
- Opportunities for additional efficiencies...
- Efficient use of adjoint simulations
- Multi-level approaches
- Gradient based optimization
- Sequential data

Ref: Gahungu et al. NeurIPS 2022, plus forthcoming pre-prints.

Conclusions

Adjoints of linear systems

- an intrusive method; development does require some work but can be automated
- Requires n adjoint solves to infer the posterior
- essentially insensitive to the number of basis functions used
- In contrast, MCMC requires a typically an a priori unknown number of simulations (but is largely independent of n).
- Gives numerically stable derivatives of the cost function with respect to other parameters, $\frac{\mathrm{d} S}{\mathrm{~d} p}$ etc.
- Opportunities for additional efficiencies...
- Efficient use of adjoint simulations
- Multi-level approaches
- Gradient based optimization
- Sequential data

Ref: Gahungu et al. NeurIPS 2022, plus forthcoming pre-prints.
Thank you for listening!

