An introduction to Gaussian Processes

Richard Wilkinson

School of Maths and Statistics
University of Sheffield

GP summer school
September 2019

Introduction

Univariate Gaussian distributions

PDF of a $\mathbf{N}(0,1)$ random variable

CDF of a $\mathbf{N}(0,1)$ random variable

X

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

PDF: $\quad f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
CDF: $\quad F_{X}(x)=\mathbb{P}(X \leq x)$ not known in closed form

Univariate Gaussian distributions

PDF of a $\mathbf{N}(0,1)$ random variable

CDF of a $\mathbf{N}(0,1)$ random variable

x

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

PDF: $\quad f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$
CDF: $\quad F_{X}(x)=\mathbb{P}(X \leq x)$ not known in closed form

If $Z \sim N(0,1)$ then $X=\mu+\sigma Z \sim N\left(\mu, \sigma^{2}\right)$

Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient mathematically

Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient mathematically

- Family of normal distributions is closed under linear operations (more later).

Univariate Gaussians

The normal／Gaussian distribution occurs naturally and is convenient mathematically
－Family of normal distributions is closed under linear operations（more later）．
－Central limit theorem

Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient mathematically

- Family of normal distributions is closed under linear operations (more later).
- Central limit theorem
- Maximum entropy: $N\left(\mu, \sigma^{2}\right)$ has maximum entropy of any distribution with mean μ and variance σ^{2} (max. ent. principle: the distribution with the largest entropy should be used as a least-informative default)

Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient mathematically

- Family of normal distributions is closed under linear operations (more later).
- Central limit theorem
- Maximum entropy: $N\left(\mu, \sigma^{2}\right)$ has maximum entropy of any distribution with mean μ and variance σ^{2} (max. ent. principle: the distribution with the largest entropy should be used as a least-informative default)
- Infinite divisibility

Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient mathematically

- Family of normal distributions is closed under linear operations (more later).
- Central limit theorem
- Maximum entropy: $N\left(\mu, \sigma^{2}\right)$ has maximum entropy of any distribution with mean μ and variance σ^{2} (max. ent. principle: the distribution with the largest entropy should be used as a least-informative default)
- Infinite divisibility
- If normally distributed rvs X and Y are uncorrelated, then they are independent

Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient mathematically

- Family of normal distributions is closed under linear operations (more later).
- Central limit theorem
- Maximum entropy: $N\left(\mu, \sigma^{2}\right)$ has maximum entropy of any distribution with mean μ and variance σ^{2} (max. ent. principle: the distribution with the largest entropy should be used as a least-informative default)
- Infinite divisibility
- If normally distributed rvs X and Y are uncorrelated, then they are independent
- Square-loss functions lead to procedures that have a Gaussian probabilistic interpretation
eg Fit model $f_{\beta}(x)$ to data y by mimizing $\sum\left(y_{i}-f_{\beta}\left(x_{i}\right)\right)^{2}$ is equivalent to maximum likelihood estimation under the assumption that $y=f_{\beta}(x)+\epsilon$ where $\epsilon \sim N\left(0, \sigma^{2}\right)$.

Multivariate Gaussian distributions

'Multivariate' $=$ two or more random variables

Multivariate Gaussian distributions

＇Multivariate＇$=$ two or more random variables
Suppose $X \in \mathbb{R}^{d}$ has a multivariate Gaussian distribution with
－mean vector $\mu \in \mathbb{R}^{d}$
－covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ ．
Write

$$
X \sim N_{d}(\mu, \Sigma)
$$

Multivariate Gaussian distributions

＇Multivariate＇$=$ two or more random variables
Suppose $X \in \mathbb{R}^{d}$ has a multivariate Gaussian distribution with
－mean vector $\mu \in \mathbb{R}^{d}$
－covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$ ．
Write

$$
X \sim N_{d}(\mu, \Sigma)
$$

Bivariate Gaussian：d＝2

$$
X=\binom{X_{1}}{X_{2}} \quad \mu=\binom{\mu_{1}}{\mu_{2}} \quad \Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho_{12} \sigma_{1} \sigma_{2} \\
\rho_{21} \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right)
$$

Multivariate Gaussian distributions

'Multivariate' = two or more random variables
Suppose $X \in \mathbb{R}^{d}$ has a multivariate Gaussian distribution with

- mean vector $\mu \in \mathbb{R}^{d}$
- covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$.

Write

$$
X \sim N_{d}(\mu, \Sigma)
$$

Bivariate Gaussian: d=2

$$
\begin{gathered}
X=\binom{X_{1}}{X_{2}} \quad \mu=\binom{\mu_{1}}{\mu_{2}} \quad \Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho_{12} \sigma_{1} \sigma_{2} \\
\rho_{21} \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right) \\
\mathbb{V a r}\left(X_{i}\right)=\sigma_{i}^{2} \quad \mathbb{C o v}\left(X_{i}, X_{j}\right)=\rho_{i j} \sigma_{i} \sigma_{j} \quad \operatorname{Cor}\left(X_{i}, X_{j}\right)=\rho_{12} \text { for } i \neq j
\end{gathered}
$$

Multivariate Gaussian distributions

'Multivariate' = two or more random variables
Suppose $X \in \mathbb{R}^{d}$ has a multivariate Gaussian distribution with

- mean vector $\mu \in \mathbb{R}^{d}$
- covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$.

Write

$$
X \sim N_{d}(\mu, \Sigma)
$$

Bivariate Gaussian: d=2

$$
\begin{aligned}
& X=\binom{X_{1}}{X_{2}} \quad \mu=\binom{\mu_{1}}{\mu_{2}} \quad \Sigma=\left(\begin{array}{cc}
\sigma_{1}^{2} & \rho_{12} \sigma_{1} \sigma_{2} \\
\rho_{21} \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right) \\
& \mathbb{V a r}\left(X_{i}\right)=\sigma_{i}^{2} \quad \mathbb{C o v}\left(X_{i}, X_{j}\right)=\rho_{i j} \sigma_{i} \sigma_{j} \quad \operatorname{Cor}\left(X_{i}, X_{j}\right)=\rho_{12} \text { for } i \neq j \\
& \text { pdf: } \quad f(x \mid \mu, \Sigma)=|\Sigma|^{-\frac{1}{2}}(2 \pi)^{-\frac{d}{2}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right)
\end{aligned}
$$

More pictures

Consider $d=5$ with

$$
\Sigma=\left(\begin{array}{ccccc}
1 & 0.9 & 0.8 & 0.7 & 0.6 \\
0.9 & 1 & 0.9 & 0.8 & 0.7 \\
0.8 & 0.9 & 1 & 0.9 & 0.8 \\
0.7 & 0.8 & 0.9 & 1 & 0.9 \\
0.6 & 0.7 & 0.8 & 0.9 & 1
\end{array}\right)
$$

It's hard to visualise in dimensions >3, so let's stack points next to each other.

More pictures

Consider $d=5$ with

$$
\Sigma=\left(\begin{array}{ccccc}
1 & 0.9 & 0.8 & 0.7 & 0.6 \\
0.9 & 1 & 0.9 & 0.8 & 0.7 \\
0.8 & 0.9 & 1 & 0.9 & 0.8 \\
0.7 & 0.8 & 0.9 & 1 & 0.9 \\
0.6 & 0.7 & 0.8 & 0.9 & 1
\end{array}\right)
$$

It's hard to visualise in dimensions >3, so let's stack points next to each other.
So for 2 d instead of
we have

$d=5$

$$
\Sigma=\left(\begin{array}{ccccc}
1 & 0.9 & 0.8 & 0.7 & 0.6 \\
0.9 & 1 & 0.9 & 0.8 & 0.7 \\
0.8 & 0.9 & 1 & 0.9 & 0.8 \\
0.7 & 0.8 & 0.9 & 1 & 0.9 \\
0.6 & 0.7 & 0.8 & 0.9 & 1
\end{array}\right)
$$

$d=50$

THIS WAS CONFUSING. HAVING X as a rv here and then as an index in a few slides caused confusion. Also, people were thinking X_{1} and X_{2} were different covaariates, as in linear regression. Think about changing this.

$$
\Sigma=\left(\begin{array}{cccccc}
1 & 0.99 & 0.98 & 0.97 & 0.96 & \ldots \\
0.99 & 1 & 0.99 & 0.98 & 0.97 & \ldots \\
0.98 & 0.99 & 1 & 0.99 & 0.98 & \ldots \\
0.97 & 0.98 & 0.99 & 1 & 0.99 & \ldots \\
0.96 & 0.97 & 0.98 & 0.99 & 1 & \ldots \\
& : & : & : & : & :
\end{array}\right)
$$

$d=50$

THIS WAS CONFUSING. HAVING X as a rv here and then as an index in a few slides caused confusion. Also, people were thinking X_{1} and X_{2} were different covaariates, as in linear regression. Think about changing this.

$$
\Sigma=\left(\begin{array}{cccccc}
1 & 0.99 & 0.98 & 0.97 & 0.96 & \ldots \\
0.99 & 1 & 0.99 & 0.98 & 0.97 & \ldots \\
0.98 & 0.99 & 1 & 0.99 & 0.98 & \ldots \\
0.97 & 0.98 & 0.99 & 1 & 0.99 & \ldots \\
0.96 & 0.97 & 0.98 & 0.99 & 1 & \ldots \\
& : & : & : & : & :
\end{array}\right)
$$

Gaussian processes

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$
f=\{f(x): x \in \mathcal{X}\}
$$

Gaussian processes

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$
f=\{f(x): x \in \mathcal{X}\}
$$

Usually $f(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^{n}$ i．e．f can be thought of as a function of location x ．

Gaussian processes

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$
f=\{f(x): x \in \mathcal{X}\}
$$

Usually $f(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^{n}$ i.e. f can be thought of as a function of location x.
If $\mathcal{X}=\mathbb{R}^{n}$, then f is an infinite dimensional process.

Gaussian processes

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$
f=\{f(x): x \in \mathcal{X}\}
$$

Usually $f(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^{n}$ i.e. f can be thought of as a function of location x.
If $\mathcal{X}=\mathbb{R}^{n}$, then f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions (FDDs), i.e., for all x_{1}, \ldots, x_{n} and for all $n \in \mathbb{N}$

$$
\mathbb{P}\left(f\left(x_{1}\right) \leq y_{1}, \ldots, f\left(x_{n}\right) \leq y_{n}\right)
$$

as these uniquely determine the law of f.

Gaussian processes

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$
f=\{f(x): x \in \mathcal{X}\}
$$

Usually $f(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^{n}$ i.e. f can be thought of as a function of location x.
If $\mathcal{X}=\mathbb{R}^{n}$, then f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions (FDDs), i.e., for all x_{1}, \ldots, x_{n} and for all $n \in \mathbb{N}$

$$
\mathbb{P}\left(f\left(x_{1}\right) \leq y_{1}, \ldots, f\left(x_{n}\right) \leq y_{n}\right)
$$

as these uniquely determine the law of f.
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

$$
\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \sim N_{n}(\mu, \Sigma)
$$

Gaussian processes

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$
f=\{f(x): x \in \mathcal{X}\}
$$

Usually $f(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^{n}$ i.e. f can be thought of as a function of location x.
If $\mathcal{X}=\mathbb{R}^{n}$, then f is an infinite dimensional process.
Thankfully we only need consider the finite dimensional distributions (FDDs), i.e., for all x_{1}, \ldots, x_{n} and for all $n \in \mathbb{N}$

$$
\mathbb{P}\left(f\left(x_{1}\right) \leq y_{1}, \ldots, f\left(x_{n}\right) \leq y_{n}\right)
$$

as these uniquely determine the law of f.
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

$$
\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \sim N_{n}(\mu, \Sigma)
$$

Why use Gaussian processes?

Why would we want to use this very restricted class of model?
Gaussian distributions have several properties that make them easy to work with:

Why use Gaussian processes？

Why would we want to use this very restricted class of model？
Gaussian distributions have several properties that make them easy to work with：

Proposition：

$$
X \sim N_{d}(\mu, \Sigma) \text { if and only if } A X \sim N_{p}\left(A \mu, A \Sigma A^{\top}\right)
$$

for all $A \in \mathbb{R}^{p \times d}$ ．

Why use Gaussian processes?

Why would we want to use this very restricted class of model?
Gaussian distributions have several properties that make them easy to work with:

Proposition:

$$
X \sim N_{d}(\mu, \Sigma) \text { if and only if } A X \sim N_{p}\left(A \mu, A \Sigma A^{\top}\right)
$$

for all $A \in \mathbb{R}^{p \times d}$.
So sums of Gaussians are Gaussian, and marginal distributions of multivariate Gaussians are still Gaussian.

Why use Gaussian processes?

Why would we want to use this very restricted class of model?
Gaussian distributions have several properties that make them easy to work with:

Proposition:

$$
X \sim N_{d}(\mu, \Sigma) \text { if and only if } A X \sim N_{p}\left(A \mu, A \Sigma A^{\top}\right)
$$

for all $A \in \mathbb{R}^{p \times d}$.
So sums of Gaussians are Gaussian, and marginal distributions of multivariate Gaussians are still Gaussian.
Corollary: Σ must be positive semi-definite as $a^{\top} \Sigma a \geq 0$ for all $a \in \mathbb{R}^{d}$.

Why use Gaussian processes?

Why would we want to use this very restricted class of model?
Gaussian distributions have several properties that make them easy to work with:

Proposition:

$$
X \sim N_{d}(\mu, \Sigma) \text { if and only if } A X \sim N_{p}\left(A \mu, A \Sigma A^{\top}\right)
$$

for all $A \in \mathbb{R}^{p \times d}$.
So sums of Gaussians are Gaussian, and marginal distributions of multivariate Gaussians are still Gaussian.
Corollary: Σ must be positive semi-definite as $a^{\top} \Sigma a \geq 0$ for all $a \in \mathbb{R}^{d}$.
Conversely, any matrix Σ which is positive semi-definite is a valid covariance matrix:
If $Z \sim N_{d}\left(0_{d}, I_{d}\right)$ then $X=\mu+\Sigma^{\frac{1}{2}} Z \sim N_{d}(\mu, \Sigma)$.
Where $\Sigma^{\frac{1}{2}}$ is a matrix square root of Σ.

Why use Gaussian processes?

Why would we want to use this very restricted class of model?
Gaussian distributions have several properties that make them easy to work with:

Proposition:

$$
X \sim N_{d}(\mu, \Sigma) \text { if and only if } A X \sim N_{p}\left(A \mu, A \Sigma A^{\top}\right)
$$

for all $A \in \mathbb{R}^{p \times d}$.
So sums of Gaussians are Gaussian, and marginal distributions of multivariate Gaussians are still Gaussian.
Corollary: Σ must be positive semi-definite as $a^{\top} \Sigma a \geq 0$ for all $a \in \mathbb{R}^{d}$.
Conversely, any matrix Σ which is positive semi-definite is a valid covariance matrix:
If $Z \sim N_{d}\left(0_{d}, I_{d}\right)$ then $X=\mu+\Sigma^{\frac{1}{2}} Z \sim N_{d}(\mu, \Sigma)$.
Where $\Sigma^{\frac{1}{2}}$ is a matrix square root of Σ.

- Gives one way of generating multivariate Gaussians.

Property 2: Conditional distributions are still Gaussian

Suppose

$$
X=\binom{X_{1}}{X_{2}} \sim N(\mu, \Sigma)
$$

where

$$
\mu=\binom{\mu_{1}}{\mu_{2}} \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

Property 2: Conditional distributions are still Gaussian

Suppose

$$
X=\binom{X_{1}}{X_{2}} \sim N(\mu, \Sigma)
$$

where

$$
\mu=\binom{\mu_{1}}{\mu_{2}} \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

Then

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Property 2: Conditional distributions are still Gaussian

Suppose

$$
X=\binom{X_{1}}{X_{2}} \sim N(\mu, \Sigma)
$$

where

$$
\mu=\binom{\mu_{1}}{\mu_{2}} \quad \Sigma=\left(\begin{array}{ll}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{21} & \Sigma_{22}
\end{array}\right)
$$

Then

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Proof:

$$
\pi\left(x_{2} \mid x_{1}\right)=\frac{\pi\left(x_{1}, x_{2}\right)}{\pi\left(x_{1}\right)} \propto \pi\left(x_{1}, x_{2}\right)
$$

Proof:

$$
\begin{aligned}
\pi\left(x_{2} \mid x_{1}\right) & =\frac{\pi\left(x_{1}, x_{2}\right)}{\pi\left(x_{1}\right)} \propto \pi\left(x_{1}, x_{2}\right) \\
& \propto \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right) \\
& =\exp \left(-\frac{1}{2}\left[\left(\binom{x_{1}}{x_{2}}-\binom{\mu_{1}}{\mu_{2}}\right)^{\top}\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right) \cdots\right]\right.
\end{aligned}
$$

where

$$
\Sigma^{-1}:=Q:=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right)
$$

Proof:

$$
\begin{aligned}
\pi\left(x_{2} \mid x_{1}\right) & =\frac{\pi\left(x_{1}, x_{2}\right)}{\pi\left(x_{1}\right)} \propto \pi\left(x_{1}, x_{2}\right) \\
& \propto \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right) \\
& =\exp \left(-\frac{1}{2}\left[\left(\binom{x_{1}}{x_{2}}-\binom{\mu_{1}}{\mu_{2}}\right)^{\top}\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right) \cdots\right]\right. \\
& \propto \exp \left(-\frac{1}{2}\left[\left(x_{2}-\mu_{2}\right)^{\top} Q_{22}\left(x_{2}-\mu_{2}\right)+2\left(x_{2}-\mu_{2}\right)^{\top} Q_{21}\left(x_{1}-\mu_{1}\right)\right]\right)
\end{aligned}
$$

where

$$
\Sigma^{-1}:=Q:=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right)
$$

Proof:

$$
\begin{aligned}
\pi\left(x_{2} \mid x_{1}\right) & =\frac{\pi\left(x_{1}, x_{2}\right)}{\pi\left(x_{1}\right)} \propto \pi\left(x_{1}, x_{2}\right) \\
& \propto \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right) \\
& =\exp \left(-\frac{1}{2}\left[\left(\binom{x_{1}}{x_{2}}-\binom{\mu_{1}}{\mu_{2}}\right)^{\top}\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right) \cdots\right]\right. \\
& \propto \exp \left(-\frac{1}{2}\left[\left(x_{2}-\mu_{2}\right)^{\top} Q_{22}\left(x_{2}-\mu_{2}\right)+2\left(x_{2}-\mu_{2}\right)^{\top} Q_{21}\left(x_{1}-\mu_{1}\right)\right]\right)
\end{aligned}
$$

where

$$
\Sigma^{-1}:=Q:=\left(\begin{array}{ll}
Q_{11} & Q_{12} \\
Q_{21} & Q_{22}
\end{array}\right)
$$

So $X_{2} \mid X_{1}=x_{1}$ is Gaussian.

$$
\pi\left(x_{2} \mid x_{1}\right) \propto \exp \left(-\frac{1}{2}\left[\left(x_{2}-\mu_{2}\right)^{\top} Q_{22}\left(x_{2}-\mu_{2}\right)+2\left(x_{2}-\mu_{2}\right)^{\top} Q_{21}\left(x_{1}-\mu_{1}\right)\right]\right)
$$

$$
\begin{aligned}
\pi\left(x_{2} \mid x_{1}\right) & \propto \exp \left(-\frac{1}{2}\left[\left(x_{2}-\mu_{2}\right)^{\top} Q_{22}\left(x_{2}-\mu_{2}\right)+2\left(x_{2}-\mu_{2}\right)^{\top} Q_{21}\left(x_{1}-\mu_{1}\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left[x_{2}^{\top} Q_{22} x_{2}-2 x_{2}^{\top}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
\pi\left(x_{2} \mid x_{1}\right) & \propto \exp \left(-\frac{1}{2}\left[\left(x_{2}-\mu_{2}\right)^{\top} Q_{22}\left(x_{2}-\mu_{2}\right)+2\left(x_{2}-\mu_{2}\right)^{\top} Q_{21}\left(x_{1}-\mu_{1}\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left[x_{2}^{\top} Q_{22} x_{2}-2 x_{2}^{\top}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left(x_{2}-Q_{22}^{-1}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right)^{\top} Q_{22}\left(x_{2}-\ldots\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\pi\left(x_{2} \mid x_{1}\right) & \propto \exp \left(-\frac{1}{2}\left[\left(x_{2}-\mu_{2}\right)^{\top} Q_{22}\left(x_{2}-\mu_{2}\right)+2\left(x_{2}-\mu_{2}\right)^{\top} Q_{21}\left(x_{1}-\mu_{1}\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left[x_{2}^{\top} Q_{22} x_{2}-2 x_{2}^{\top}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left(x_{2}-Q_{22}^{-1}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right)^{\top} Q_{22}\left(x_{2}-\ldots\right)\right)
\end{aligned}
$$

So

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(\mu_{2}+Q_{22}^{-1} Q_{21}\left(x_{1}-\mu_{1}\right), Q_{22}\right)
$$

$$
\begin{aligned}
\pi\left(x_{2} \mid x_{1}\right) & \propto \exp \left(-\frac{1}{2}\left[\left(x_{2}-\mu_{2}\right)^{\top} Q_{22}\left(x_{2}-\mu_{2}\right)+2\left(x_{2}-\mu_{2}\right)^{\top} Q_{21}\left(x_{1}-\mu_{1}\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left[x_{2}^{\top} Q_{22} x_{2}-2 x_{2}^{\top}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left(x_{2}-Q_{22}^{-1}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right)^{\top} Q_{22}\left(x_{2}-\ldots\right)\right)
\end{aligned}
$$

So

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(\mu_{2}+Q_{22}^{-1} Q_{21}\left(x_{1}-\mu_{1}\right), Q_{22}\right)
$$

A simple matrix inversion lemma gives

$$
\begin{aligned}
Q_{22}^{-1} & =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \\
\text { and } Q_{22}^{-1} Q_{21} & =\Sigma_{21} \Sigma_{11}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
\pi\left(x_{2} \mid x_{1}\right) & \propto \exp \left(-\frac{1}{2}\left[\left(x_{2}-\mu_{2}\right)^{\top} Q_{22}\left(x_{2}-\mu_{2}\right)+2\left(x_{2}-\mu_{2}\right)^{\top} Q_{21}\left(x_{1}-\mu_{1}\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left[x_{2}^{\top} Q_{22} x_{2}-2 x_{2}^{\top}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right]\right) \\
& \propto \exp \left(-\frac{1}{2}\left(x_{2}-Q_{22}^{-1}\left(Q_{22} \mu_{2}+Q_{21}\left(x_{1}-\mu_{1}\right)\right)\right)^{\top} Q_{22}\left(x_{2}-\ldots\right)\right)
\end{aligned}
$$

So

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(\mu_{2}+Q_{22}^{-1} Q_{21}\left(x_{1}-\mu_{1}\right), Q_{22}\right)
$$

A simple matrix inversion lemma gives

$$
\begin{aligned}
Q_{22}^{-1} & =\Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \\
\text { and } Q_{22}^{-1} Q_{21} & =\Sigma_{21} \Sigma_{11}^{-1}
\end{aligned}
$$

giving

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Conditional updates of Gaussian processes

So suppose f is a Gaussian process, then

$$
f\left(x_{1}\right), \ldots, f\left(x_{n}\right), f(x) \sim N(\mu, \Sigma)
$$

Conditional updates of Gaussian processes

So suppose f is a Gaussian process, then

$$
f\left(x_{1}\right), \ldots, f\left(x_{n}\right), f(x) \sim N(\mu, \Sigma)
$$

If we observe its value at x_{1}, \ldots, x_{n} then

$$
f(x) \mid f\left(x_{1}\right), \ldots, f\left(x_{n}\right) \sim N\left(\mu^{*}, \sigma^{*}\right)
$$

where μ^{*} and σ^{*} are as on the previous slide.

Conditional updates of Gaussian processes

So suppose f is a Gaussian process，then

$$
f\left(x_{1}\right), \ldots, f\left(x_{n}\right), f(x) \sim N(\mu, \Sigma)
$$

If we observe its value at x_{1}, \ldots, x_{n} then

$$
f(x) \mid f\left(x_{1}\right), \ldots, f\left(x_{n}\right) \sim N\left(\mu^{*}, \sigma^{*}\right)
$$

where μ^{*} and σ^{*} are as on the previous slide．
Note that we still believe f is a GP even though we＇ve observed its value at a number of locations．

Why use GPs? Answer 1

The GP class of models is closed under various operations.

Why use GPs? Answer 1

The GP class of models is closed under various operations.

- Closed under addition

$$
f_{1}(\cdot), f_{2}(\cdot) \sim G P \quad \text { then } \quad\left(f_{1}+f_{2}\right)(\cdot) \sim G P
$$

Why use GPs? Answer 1

The GP class of models is closed under various operations.

- Closed under addition

$$
f_{1}(\cdot), f_{2}(\cdot) \sim G P \quad \text { then } \quad\left(f_{1}+f_{2}\right)(\cdot) \sim G P
$$

- Closed under Bayesian conditioning, i.e., if we observe

$$
\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

Why use GPs? Answer 1

The GP class of models is closed under various operations.

- Closed under addition

$$
f_{1}(\cdot), f_{2}(\cdot) \sim G P \quad \text { then } \quad\left(f_{1}+f_{2}\right)(\cdot) \sim G P
$$

- Closed under Bayesian conditioning, i.e., if we observe

$$
\mathbf{D}=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)
$$

then

$$
f \mid D \sim G P
$$

but with updated mean and covariance functions.

- Closed under any linear operator. If $f \sim G P(m(\cdot), k(\cdot, \cdot))$, then if \mathcal{L} is a linear operator

$$
\mathcal{L} \circ f \sim G P\left(\mathcal{L} \circ m, \mathcal{L}^{2} \circ k\right)
$$

e.g. $\frac{d f}{d x}, \int f(x) d x, A f$ are all GPs

Determining the mean and covariance function

 How do we determine the mean $\mathbb{E}(f(x))$ and covariance $\operatorname{Cov}\left(f(x), f\left(x^{\prime}\right)\right)$?
Determining the mean and covariance function

 How do we determine the mean $\mathbb{E}(f(x))$ and covariance $\operatorname{Cov}\left(f(x), f\left(x^{\prime}\right)\right)$? Simplest answer is to pick values we like (found by trial and error) subject to 'the rules':
Determining the mean and covariance function

 How do we determine the mean $\mathbb{E}(f(x))$ and covariance $\mathbb{C o v}\left(f(x), f\left(x^{\prime}\right)\right)$ ？ Simplest answer is to pick values we like（found by trial and error）subject to＇the rules＇：－We can use any mean function we want：

$$
m(x)=\mathbb{E}(f(x))
$$

Most popular choices are $m(x)=0$ or $m(x)=a$ for all x ，or $m(x)=a+b x$

Determining the mean and covariance function

 How do we determine the mean $\mathbb{E}(f(x))$ and covariance $\mathbb{C o v}\left(f(x), f\left(x^{\prime}\right)\right)$? Simplest answer is to pick values we like (found by trial and error) subject to 'the rules':- We can use any mean function we want:

$$
m(x)=\mathbb{E}(f(x))
$$

Most popular choices are $m(x)=0$ or $m(x)=a$ for all x, or $m(x)=a+b x$

- If mean is a linear combination of known regressor functions, e.g.,

$$
m(x)=\beta h(x) \text { for known } h(x)
$$

and $\beta \sim N(\cdot, \cdot)$ is given a normal prior (including $\pi(\beta) \propto 1$), then $f \mid D, \beta \sim G P$ and

$$
f \mid D \sim G P
$$

with slightly modified mean and variance formulas.

Covariance functions

- We usually use a covariance function that is a function of distance between the locations

$$
k\left(x, x^{\prime}\right)=\operatorname{Cov}\left(f(x), f\left(x^{\prime}\right)\right)
$$

which has to be positive semi-definite, i.e., lead to valid covariance matrices.

Covariance functions

- We usually use a covariance function that is a function of distance between the locations

$$
k\left(x, x^{\prime}\right)=\mathbb{C o v}\left(f(x), f\left(x^{\prime}\right)\right)
$$

which has to be positive semi-definite, i.e., lead to valid covariance matrices.

- This can be problematic (see Nicolas' talk)

Covariance functions

- We usually use a covariance function that is a function of distance between the locations

$$
k\left(x, x^{\prime}\right)=\operatorname{Cov}\left(f(x), f\left(x^{\prime}\right)\right)
$$

which has to be positive semi-definite, i.e., lead to valid covariance matrices.

- This can be problematic (see Nicolas' talk)
- If

$$
k\left(x, x^{\prime}\right)=\sigma^{2} c\left(x, x^{\prime}\right)
$$

and we give σ^{2} an inverse gamma prior (including $\pi\left(\sigma^{2}\right) \propto 1 / \sigma^{2}$) then $f \mid D, \sigma^{2} \sim G P$ and

$$
f \mid D \sim \text { t-process }
$$

with $n-p$ degrees of freedom. In practice, for reasonable n, this is indistinguishable from a GP.

Examples

RBF/Squared-exponential/exponentiated quadratic

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2}\left(x-x^{\prime}\right)^{2}\right)
$$

Examples

RBF/Squared-exponential/exponentiated quadratic

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2} \frac{\left(x-x^{\prime}\right)^{2}}{0.25^{2}}\right)
$$

Examples

RBF／Squared－exponential／exponentiated quadratic

$$
k\left(x, x^{\prime}\right)=\exp \left(-\frac{1}{2} \frac{\left(x-x^{\prime}\right)^{2}}{4^{2}}\right)
$$

Examples

RBF/Squared-exponential/exponentiated quadratic

$$
k\left(x, x^{\prime}\right)=100 \exp \left(-\frac{1}{2}\left(x-x^{\prime}\right)^{2}\right)
$$

Examples

Matern 3／2

$$
k\left(x, x^{\prime}\right) \sim\left(1+\left|x-x^{\prime}\right|\right) \exp \left(-\left|x-x^{\prime}\right|\right)
$$

Examples

Brownian motion

$$
k\left(x, x^{\prime}\right)=\min \left(x, x^{\prime}\right)
$$

Examples

White noise

$$
k\left(x, x^{\prime}\right)=\left\{\begin{array}{l}
1 \text { if } x=x^{\prime} \\
0 \text { otherwise }
\end{array}\right.
$$

Examples

The GP inherits its properties primarily from the covariance function k.

- Smoothness
- Differentiability
- Variance

Examples

The GP inherits its properties primarily from the covariance function k.

- Smoothness
- Differentiability
- Variance

A final example

$$
k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}
$$

Examples

The GP inherits its properties primarily from the covariance function k.

- Smoothness
- Differentiability
- Variance

A final example

$$
k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}
$$

Examples

The GP inherits its properties primarily from the covariance function k.

- Smoothness
- Differentiability
- Variance

A final example

$$
k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}
$$

What is happening?
Suppose $f(x)=c x$ where $c \sim N(0,1)$.
Then
$\begin{aligned} \operatorname{Cov}\left(f(x), f\left(x^{\prime}\right)\right) & =\mathbb{C o v}\left(c x, c x^{\prime}\right) \\ & =x^{\top} \operatorname{Cov}(c, c) x^{\prime}\end{aligned}$
$=x^{\top} x^{\prime}$

Conditional updates of Gaussian processes - revisited

ERROR: here covariance is Sigma, but on next slide I have Sigma + sigma2 I.
So suppose f is a Gaussian process, then

$$
f\left(x_{1}\right), \ldots, f\left(x_{n}\right), f(x) \sim N(0, \Sigma)
$$

where

$$
\Sigma=\left(\begin{array}{ccccc}
& & & k\left(x_{1}, x\right) \\
& K & & k\left(x_{2}, x\right) \\
& & & & \vdots \\
k\left(x, x_{1}\right) & k\left(x, x_{2}\right) & \ldots & k\left(x, x_{n}\right) & k(x, x)
\end{array}\right)
$$

where $K_{i j}=k\left(x_{i}, x_{j}\right)$ is the Gram/kernel matrix.

Conditional updates of Gaussian processes - revisited

Then

$$
f(x) \mid f\left(x_{1}\right), \ldots, f\left(x_{n}\right) \sim N(m(x), c(x))
$$

where

$$
m(x)=k(x)\left(K+\sigma^{2} I\right)^{-1} y
$$

with

$$
k(x)=\left(k\left(x, x_{1}\right) \quad k\left(x, x_{2}\right) \ldots \quad k\left(x, x_{n}\right)\right) \in \mathbb{R}^{1 \times n}
$$

and

Conditional updates of Gaussian processes - revisited

Then

$$
f(x) \mid f\left(x_{1}\right), \ldots, f\left(x_{n}\right) \sim N(m(x), c(x))
$$

where

$$
m(x)=k(x)\left(K+\sigma^{2} I\right)^{-1} y
$$

with

$$
k(x)=\left(k\left(x, x_{1}\right) \quad k\left(x, x_{2}\right) \quad \ldots \quad k\left(x, x_{n}\right)\right) \in \mathbb{R}^{1 \times n}
$$

and

$$
c(x)=k(x, x)-k(x)\left(K+\sigma^{2} I\right)^{-1} k(x)^{\top}
$$

Conditional updates of Gaussian processes - revisited

Then

$$
f(x) \mid f\left(x_{1}\right), \ldots, f\left(x_{n}\right) \sim N(m(x), c(x))
$$

where

$$
m(x)=k(x)\left(K+\sigma^{2} I\right)^{-1} y
$$

with

$$
k(x)=\left(k\left(x, x_{1}\right) \quad k\left(x, x_{2}\right) \ldots \quad k\left(x, x_{n}\right)\right) \in \mathbb{R}^{1 \times n}
$$

and

$$
c(x)=k(x, x)-k(x)\left(K+\sigma^{2} I\right)^{-1} k(x)^{\top}
$$

Cf

$$
X_{2} \mid X_{1}=x_{1} \sim N\left(\mu_{2}+\Sigma_{21} \Sigma_{11}^{-1}\left(x_{1}-\mu_{1}\right), \Sigma_{22}-\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12}\right)
$$

Why use GPs? Answer 2: non-parametric/kernel regression We can also view GPs as a non-parametric extension to linear regression. k determines the space of functions that sample paths live in.

Why use GPs? Answer 2: non-parametric/kernel regression We can also view GPs as a non-parametric extension to linear regression. k determines the space of functions that sample paths live in. Suppose we're given data $\left\{\left(x_{i}, y_{i}\right)_{i=1}^{n}\right\}$. NOTE: ERROR here - the sigma2 in the solution is not the same as the regularization parameter.
Linear regression $y=x^{\top} \beta+\epsilon$ can be written solely in terms of inner products $x^{\top} x$.

Why use GPs? Answer 2: non-parametric/kernel regression We can also view GPs as a non-parametric extension to linear regression. k determines the space of functions that sample paths live in. Suppose we're given data $\left\{\left(x_{i}, y_{i}\right)_{i=1}^{n}\right\}$. NOTE: ERROR here - the sigma2 in the solution is not the same as the regularization parameter.
Linear regression $y=x^{\top} \beta+\epsilon$ can be written solely in terms of inner products $x^{\top} x$.

$$
\begin{aligned}
\hat{\beta} & =\arg \min \|y-X \beta\|_{2}^{2}+\sigma^{2}\|\beta\|_{2}^{2} \\
& =\left(X^{\top} X+\sigma^{2} I\right)^{-1} X^{\top} y
\end{aligned}
$$

Why use GPs? Answer 2: non-parametric/kernel regression We can also view GPs as a non-parametric extension to linear regression. k determines the space of functions that sample paths live in. Suppose we're given data $\left\{\left(x_{i}, y_{i}\right)_{i=1}^{n}\right\}$. NOTE: ERROR here - the sigma2 in the solution is not the same as the regularization parameter.
Linear regression $y=x^{\top} \beta+\epsilon$ can be written solely in terms of inner products $x^{\top} x$.

$$
\begin{aligned}
\hat{\beta} & =\arg \min \|y-X \beta\|_{2}^{2}+\sigma^{2}\|\beta\|_{2}^{2} \\
& =\left(X^{\top} X+\sigma^{2} I\right)^{-1} X^{\top} y \\
& =X^{\top}\left(X X^{\top}+\sigma^{2} I\right)^{-1} y \quad \text { (the dual form) }
\end{aligned}
$$

where $\quad X=\left(\begin{array}{c}x_{1}^{\top} \\ x_{2}^{\top} \\ \vdots\end{array}\right)$

Why use GPs? Answer 2: non-parametric/kernel regression We can also view GPs as a non-parametric extension to linear regression. k determines the space of functions that sample paths live in. Suppose we're given data $\left\{\left(x_{i}, y_{i}\right)_{i=1}^{n}\right\}$. NOTE: ERROR here - the sigma2 in the solution is not the same as the regularization parameter.
Linear regression $y=x^{\top} \beta+\epsilon$ can be written solely in terms of inner products $x^{\top} x$.

$$
\begin{aligned}
& \hat{\beta}=\arg \min \|y-X \beta\|_{2}^{2}+\sigma^{2}\|\beta\|_{2}^{2} \\
& =\left(X^{\top} X+\sigma^{2} I\right)^{-1} X^{\top} y \\
& =X^{\top}\left(X X^{\top}+\sigma^{2} I\right)^{-1} y \quad \text { (the dual form) } \\
& \text { as } \\
& \text { so } \quad X^{\top}\left(X X^{\top}+\sigma^{2} I\right)^{-1}=\left(X^{\top} X+\sigma^{2} I\right)^{-1} X^{\top}
\end{aligned}
$$

where $\quad X=\left(\begin{array}{c}x_{1}^{\top} \\ x_{2}^{\top} \\ \vdots\end{array}\right)$

At first the dual form

$$
\hat{\beta}=X^{\top}\left(X X^{\top}+\sigma^{2} I\right)^{-1} y
$$

looks harder to compute than the usual

$$
\hat{\beta}=\left(X^{\top} X+\sigma^{2} I\right)^{-1} X^{\top} y
$$

－$X^{\top} X$ is $p \times p$
$p=$ number of features／parameters
－$X X^{\top}$ is $n \times n$
n is the number of data points

At first the dual form

$$
\hat{\beta}=X^{\top}\left(X X^{\top}+\sigma^{2} I\right)^{-1} y
$$

looks harder to compute than the usual

$$
\hat{\beta}=\left(X^{\top} X+\sigma^{2} I\right)^{-1} X^{\top} y
$$

- $X^{\top} X$ is $p \times p \quad p=$ number of features/parameters
- $X X^{\top}$ is $n \times n \quad n$ is the number of data points

But the dual form only uses inner products.

$$
X X^{\top}=\left(\begin{array}{c}
x_{1}^{\top} \\
\vdots \\
x_{n}^{\top}
\end{array}\right)\left(x_{1} \ldots x_{n}\right)=\left(\begin{array}{ccc}
x_{1}^{\top} x_{1} & \ldots & x_{1}^{\top} x_{n} \\
\vdots & & \\
x_{n}^{\top} x_{1} & \ldots & x_{n}^{\top} x_{n}
\end{array}\right)=K
$$

- This is useful!

Prediction

The best prediction of y at a new location x^{\prime} is

$$
\begin{aligned}
\hat{y}^{\prime} & =x^{\prime \top} \hat{\beta} \\
& =x^{\prime \top} X^{\top}\left(X X^{\top}+\sigma^{2} I\right)^{-1} y \\
& =k\left(x^{\prime}\right)\left(K+\sigma^{2} I\right)^{-1} y
\end{aligned}
$$

where $k\left(x^{\prime}\right):=\left(x^{\prime \top} x_{1}, \ldots, x^{\prime \top} x_{n}\right)$ and $K_{i j}:=x_{i}^{\top} x_{j}$

Prediction

The best prediction of y at a new location x^{\prime} is

$$
\begin{aligned}
\hat{y}^{\prime} & =x^{\prime \top} \hat{\beta} \\
& =x^{\prime \top} X^{\top}\left(X X^{\top}+\sigma^{2} I\right)^{-1} y \\
& =k\left(x^{\prime}\right)\left(K+\sigma^{2} I\right)^{-1} y
\end{aligned}
$$

where $k\left(x^{\prime}\right):=\left(x^{\prime \top} x_{1}, \ldots, x^{\prime \top} x_{n}\right)$ and $K_{i j}:=x_{i}^{\top} x_{j}$ K and $k(x)$ are kernel matrices

- every element is an inner product btwn 2 points.

Prediction

The best prediction of y at a new location x^{\prime} is

$$
\begin{aligned}
\hat{y}^{\prime} & =x^{\prime \top} \hat{\beta} \\
& =x^{\prime \top} X^{\top}\left(X X^{\top}+\sigma^{2} I\right)^{-1} y \\
& =k\left(x^{\prime}\right)\left(K+\sigma^{2} I\right)^{-1} y
\end{aligned}
$$

where $k\left(x^{\prime}\right):=\left(x^{\prime \top} x_{1}, \ldots, x^{\prime \top} x_{n}\right)$ and $K_{i j}:=x_{i}^{\top} x_{j}$
K and $k(x)$ are kernel matrices

- every element is an inner product btwn 2 points.

Note this is exactly the GP conditional mean we derived before.

$$
m(x)=t(x)\left(K+\sigma^{2} I\right)^{-1} y
$$

- linear regression and GP regression are equivalent when

$$
k\left(x, x^{\prime}\right)=x^{\top} x^{\prime}
$$

- We know that we can replace x by a feature vector in linear regression, e.g., $\phi(x)=\left(1 \times x^{2}\right)$ etc. Then

$$
K_{i j}=\phi\left(x_{i}\right)^{\top} \phi\left(x_{j}\right) \quad \text { etc }
$$

- For some sets of features, the inner product is equivalent to evaluating a kernel function

$$
\phi(x)^{\top} \phi\left(x^{\prime}\right) \equiv k\left(x, x^{\prime}\right)
$$

where

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

is a semi-positive definite function.

NEEDS CLARIFICATION. ADD PICTURE OF FEATURES ETC. ADD THEORY AND TIGHTEN UP.

- For some sets of features, the inner product is equivalent to evaluating a kernel function

$$
\phi(x)^{\top} \phi\left(x^{\prime}\right) \equiv k\left(x, x^{\prime}\right)
$$

where

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

is a semi-positive definite function.
Example: If (modulo some detail)

$$
\phi(x)=\left(e^{-\frac{\left(x-c_{1}\right)^{2}}{2 \lambda^{2}}}, \ldots, e^{-\frac{\left(x-c_{N}\right)^{2}}{2 \lambda^{2}}}\right)
$$

then as $N \rightarrow \infty$ then

$$
\phi(x)^{\top} \phi(x)=\exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 \lambda^{2}}\right)
$$

NEEDS CLARIFICATION. ADD PICTURE OF FEATURES ETC. ADD THEORY AND TIGHTEN UP.

- For some sets of features, the inner product is equivalent to evaluating a kernel function

$$
\phi(x)^{\top} \phi\left(x^{\prime}\right) \equiv k\left(x, x^{\prime}\right)
$$

where

$$
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}
$$

is a semi-positive definite function.
Example: If (modulo some detail)

$$
\phi(x)=\left(e^{-\frac{\left(x-c_{1}\right)^{2}}{2 \lambda^{2}}}, \ldots, e^{-\frac{\left(x-c_{N}\right)^{2}}{2 \lambda^{2}}}\right)
$$

then as $N \rightarrow \infty$ then

$$
\phi(x)^{\top} \phi(x)=\exp \left(-\frac{\left(x-x^{\prime}\right)^{2}}{2 \lambda^{2}}\right)
$$

NEEDS CLARIFICATION. ADD PICTURE OF FEATURES ETC. ADD THEORY AND TIGHTEN UP.

- We can use an infinite dimensional feature vector $\phi(x)$, and because linear regression can be done solely in terms of inner-products (inverting a $n \times n$ matrix in the dual form) we never need evaluate

Kernel trick:

lift x into feature space by replacing inner products $x^{\top} x^{\prime}$ by $k\left(x, x^{\prime}\right)$

Kernel trick：

lift x into feature space by replacing inner products $x^{\top} x^{\prime}$ by $k\left(x, x^{\prime}\right)$

Kernel regression／non－parametric regression／GP regression all closely related：

$$
\hat{y}^{\prime}=m\left(x^{\prime}\right)=\sum_{i=1}^{n} \alpha_{i} k\left(x, x_{i}\right)
$$

Generally, we don't think about these features, we just choose a kernel.

- $k\left(x, x^{\prime}\right)$ is a kernel ifF it is a positive semidefinite function

Generally, we don't think about these features, we just choose a kernel.

- $k\left(x, x^{\prime}\right)$ is a kernel ifF it is a positive semidefinite function Any kernel implicitly determines a set of features (ie we can write $k\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)$ for some feature vector $\left.\phi(x)\right)$,

Generally, we don't think about these features, we just choose a kernel.

- $k\left(x, x^{\prime}\right)$ is a kernel ifF it is a positive semidefinite function

Any kernel implicitly determines a set of features (ie we can write $k\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)$ for some feature vector $\left.\phi(x)\right)$, and our model only includes functions that are linear combinations of this set of features

$$
f(x)=\sum_{i} c_{i} k\left(x, x_{i}\right)^{1}
$$

[^0]Generally, we don't think about these features, we just choose a kernel.

- $k\left(x, x^{\prime}\right)$ is a kernel ifF it is a positive semidefinite function

Any kernel implicitly determines a set of features (ie we can write $k\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)$ for some feature vector $\left.\phi(x)\right)$, and our model only includes functions that are linear combinations of this set of features

$$
f(x)=\sum_{i} c_{i} k\left(x, x_{i}\right)^{1}
$$

- this space of functions is called the Reproducing Kernel Hilbert Space (RKHS) of k.

[^1]Generally, we don't think about these features, we just choose a kernel.

- $k\left(x, x^{\prime}\right)$ is a kernel ifF it is a positive semidefinite function

Any kernel implicitly determines a set of features (ie we can write $k\left(x, x^{\prime}\right)=\phi(x)^{\top} \phi\left(x^{\prime}\right)$ for some feature vector $\left.\phi(x)\right)$, and our model only includes functions that are linear combinations of this set of features

$$
f(x)=\sum_{i} c_{i} k\left(x, x_{i}\right)^{1}
$$

- this space of functions is called the Reproducing Kernel Hilbert Space (RKHS) of k.

Although reality may not lie in the RKHS defined by k, this space is much richer than any parametric regression model (and can be dense in some sets of continuous bounded functions), and is thus more likely to contain an element close to the true functional form than any class of models that contains only a finite number of features.

This is the motivation for non-parametric methods.

[^2]
Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?
One answer might come from Bayes linear methods ${ }^{2}$. If we only knew the expectation and variance of some random variables, X and Y, then how should we best do statistics?

[^3]
Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?
One answer might come from Bayes linear methods ${ }^{2}$.
If we only knew the expectation and variance of some random variables, X and Y, then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments, or..., that the best second-order inference we can do to update our beliefs about X given Y is

$$
\mathbb{E}(X \mid Y)=\mathbb{E}(X)+\mathbb{C o v}(X, Y) \operatorname{Var}(Y)^{-1}(Y-\mathbb{E}(Y))
$$

i.e., exactly the Gaussian process update for the posterior mean.

So GPs are in some sense second-order optimal.

[^4]
Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?
One answer might come from Bayes linear methods ${ }^{2}$.
If we only knew the expectation and variance of some random variables, X and Y, then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments, or..., that the best second-order inference we can do to update our beliefs about X given Y is

$$
\mathbb{E}(X \mid Y)=\mathbb{E}(X)+\mathbb{C o v}(X, Y) \operatorname{Var}(Y)^{-1}(Y-\mathbb{E}(Y))
$$

i.e., exactly the Gaussian process update for the posterior mean.

So GPs are in some sense second-order optimal.
See also kernel Bayes and kriging/BLUP.

[^5]
Why use GPs？Answer 4：Uncertainty estimates from

 emulatorsWe often think of our prediction as consisting of two parts
－point estimate
－uncertainty in that estimate
That GPs come equipped with the uncertainty in their prediction is seen as one of their main advantages．

Why use GPs？Answer 4：Uncertainty estimates from

 emulatorsWe often think of our prediction as consisting of two parts
－point estimate
－uncertainty in that estimate
That GPs come equipped with the uncertainty in their prediction is seen as one of their main advantages．

It is important to check both aspects．

Why use GPs? Answer 4: Uncertainty estimates from emulators

We often think of our prediction as consisting of two parts

- point estimate
- uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen as one of their main advantages.

It is important to check both aspects.
Warning: the uncertainty estimates from a GP can be flawed. Note that given data $D=\{X, y\}$

$$
\operatorname{Var}(f(x) \mid X, y)=k(x, x)-k(x, X) k(X, X)^{-1} k(X, x)
$$

so that the posterior variance of $f(x)$ does not depend upon y !
The variance estimates are particularly sensitive to the hyper-parameter estimates.

Difficulties of using GPs

If we know what RKHS \equiv what covariance function we should use, GPs work great!

Difficulties of using GPs

If we know what RKHS \equiv what covariance function we should use，GPs work great！
Unfortunately，we don＇t usually know this．
－We pick a covariance function from a small set，based usually on differentiability considerations．

Difficulties of using GPs

If we know what RKHS \equiv what covariance function we should use，GPs work great！
Unfortunately，we don＇t usually know this．
－We pick a covariance function from a small set，based usually on differentiability considerations．
－Possibly try a few（plus combinations of a few）covariance functions， and attempt to make a good choice using some sort of empirical evaluation．

Difficulties of using GPs

If we know what RKHS \equiv what covariance function we should use, GPs work great!
Unfortunately, we don't usually know this.

- We pick a covariance function from a small set, based usually on differentiability considerations.
- Possibly try a few (plus combinations of a few) covariance functions, and attempt to make a good choice using some sort of empirical evaluation.
- Covariance functions often contain hyper-parameters. E.g
- RBF kernel

$$
k\left(x, x^{\prime}\right)=\sigma^{2} \exp \left(-\frac{1}{2} \frac{\left(x-x^{\prime}\right)^{2}}{\lambda^{2}}\right)
$$

Estimate these using some standard procedure (maximum likelihood, cross-validation, Bayes etc)

Difficulties of using GPs

Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the data.

Difficulties of using GPs

Gelman et al． 2017

Assuming a GP model for your data imposes a complex structure on the data．

The number of parameters in a GP is essentially infinite，and so they are not identified even asymptotically．

Difficulties of using GPs

Gelman et al． 2017

Assuming a GP model for your data imposes a complex structure on the data．

The number of parameters in a GP is essentially infinite，and so they are not identified even asymptotically．

So the posterior can concentrate not on a point，but on some submanifold of parameter space，and the projection of the prior on this space continues to impact the posterior even as more and more data are collected．

Difficulties of using GPs

Assuming a GP model for your data imposes a complex structure on the data.

The number of parameters in a GP is essentially infinite, and so they are not identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold of parameter space, and the projection of the prior on this space continues to impact the posterior even as more and more data are collected.
E.g. consider a zero mean GP on $[0,1]$ with covariance function

$$
k\left(x, x^{\prime}\right)=\sigma^{2} \exp \left(-\kappa^{2}|x-x|\right)
$$

We can consistently estimate $\sigma^{2} \kappa$, but not σ^{2} or κ, even as $n \rightarrow \infty$.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being maximized is often flat and multi-modal, and thus the optimizer can sometimes fail to converge, or gets stuck in local-maxima.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being maximized is often flat and multi-modal, and thus the optimizer can sometimes fail to converge, or gets stuck in local-maxima.
In practice, it is not uncommon to optimize hyper parameters and find solutions such as

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being maximized is often flat and multi-modal, and thus the optimizer can sometimes fail to converge, or gets stuck in local-maxima.
In practice, it is not uncommon to optimize hyper parameters and find solutions such as

We often work around these problems by running the optimizer multiple times from random start points, using prior distributions, constraining or fixing hyper-parameters, or adding white noise.

[^0]: ${ }^{1}$ Not quite - it lies in the completion of this set of linear combinations

[^1]: ${ }^{1}$ Not quite - it lies in the completion of this set of linear combinations

[^2]: ${ }^{1}$ Not quite - it lies in the completion of this set of linear combinations

[^3]: ${ }^{2}$ Statistics without probability!

[^4]: ${ }^{2}$ Statistics without probability!

[^5]: ${ }^{2}$ Statistics without probability!

