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Gaussian processes
We are given data D = {xi , yi}ni=1 which is pairs of inputs and outputs.
We want to learn the functional relationship between inputs x and
outputs y . We will use a GP to model this relationship.

Our GP model consists of the following:

A mean function
I Zero or a constant can often be a good choice.

A covariance function. This (and the mean function) will often
depend on unknown parameters ψ.

A likelihood relating the unknown function f (x) to the data y , e.g.

yi = f (xi ) + εi where εi ∼ N(0, σ2)

with εi |= εj for i 6= j .
Here f is the continuous latent function underlying the relationship -
it is this we will model by a GP.

Then inference consists of

A Bayesian updating scheme to infer π(f (x)|D, ψ).

An approach to estimate the hyper-parameters, ψ.
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Mean functions

The mean function

m(x) = Ef (x)

is

the most important/unimportant part of a GP, and

is a key aspect of your inference/an unnecessary parametric
bottleneck.

The machine learning world tends to set m(x) = 0 or sometimes a
non-zero constant, but they are often working with large amounts of
closely packed data.

The UQ/emulator world tends to put more effort into choosing a good
parametric form for m(x) = βx , as their data is often sparse, and so a
strong parametric component can help (or sometimes hinder...)
predictions in regions where we lack data.
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Covariance functions/kernels
The covariance function is the most important aspect of a GP

k(x , x ′) := Cov(f (x), f (x ′))

The space of functions that samples from a given GP live in, is
determined by the choice of k .

If k is stationary, then we can write k(x , x ′) = k(x − x ′). The
differentiability of the sample paths matches the differentiability of
k(r) at r = 0, i.e., if k(r) is twice differentiable, then the sample
paths will be twice differentiable.

Covariance functions are often parameterized in terms of
hyperparameters, e.g.,

k(x , x ′) = σ2 exp(−(x − x ′)2/λ2)

Here σ2 controls the variance of the sample paths, and λ determines their
length-scale.

Rough rule of thumb: if |x − x ′| > 2λ then f (x) and f (x ′) are close
to being uncorrelated.
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Posterior inference
The main reason for using GPs is that if f (·) ∼ GP(m(·), k(·)), then if we
observe data (xi , yi )

yi = f (xi ) + εi where εi ∼ N(0, σ2)

then
f (·)|D ∼ GP(m∗(·), k∗(·))

ie they form a closed class of models under Bayesian conditioning.

In GPy, the likelihood refers to the distribution of the random error ε.

If ε ∼ N(0, σ2) then usually we just do the Bayesian updating to train the
model.
Some exceptions:

If ε has a non-Gaussian distribution, then we need to use an
alternative updating scheme.
If n is large, then the full Bayesian updating can be prohibitively
expensive, as we have to invert a n × n matrix (cost O(n3)). There
are sparse methods to reduce this cost (included in GPy) that allow
us to work with larger datasets.
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Estimating hyper-parameters

If we know the hyper-parameters, working with GPs is a pleasant
experience, and the theory is beautiful and simple.

But if we need to estimate hyper-parameters, then everything gets
much trickier.

There are various approaches for estimating the hyper-parameters.

Maximum likelihood (and related) approaches are the default choice

Cross-validation

Sampling them from their posterior distribution (e.g. using MCMC)

The estimation is often tricky, as the likelihood surface can be flat with
multiple local maxima.

Sometimes we need to resort to tricks such as constraining values to lie in
some interval (or placing a prior distribution on them), or fixing them at
sensible values by hand.
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GPy

GPs are not usually robust models that we can treat as magic
black-boxes.

GPy is probably the most complete GP implementation, written by
people deeply involved in the GP world.

GP fitting can often go wrong.

Hyper-parameter optimization is usually the problem.

Try constraining the hyper parameters using your judgement.

You must check your model in some way.

Plot your fitted model

Test its predictive skill (held out data, or cross-validation)

The optimized value of the log-likelihood tells you how good a fit
you’ve found - the larger the better, but it does not indicate
predictive skill.


